Science, Technology, Engineering and Mathematics.
Open Access

THE ROLE OF IMMOBILIZED MICROBIAL TECHNOLOGY IN REMEDIATING HEAVY METAL CONTAMINATED SOIL

Download as PDF

Volume 2, Issue 1, Pp 9-15, 2024

DOI: 10.61784/ajes240106

Author(s)

Estella Glennie

Affiliation(s)

Department of Civil and Environmental Engineering, University of Houston, United States.

Corresponding Author

Estella Glennie

ABSTRACT

Immobilized microbial technology is an effective way to remediate heavy metal pollution in soil. The main content of immobilized microbial technology is reviewed, including the repair mechanism, methods of immobilized microorganisms, requirements and types of immobilized carriers, and from three aspects: improver-assisted microbial remediation, new material composite immobilized microorganisms, and co-immobilized microbial remediation. The application and potential of this technology to remediate heavy metal pollution in soil were expounded, and the research trends and existing problems of immobilized microbial technology were reviewed.

KEYWORDS

Immobilized microorganisms; Soil; Soil pollution; Heavy metals; Environmental remediation

CITE THIS PAPER

Estella Glennie. The role of immobilized microbial technology in remediating heavy metal contaminated soil. Academic Journal of Earth Sciences. 2024, 2(1): 9-15. DOI: 10.61784/ajes240106.

REFERENCES

[1] ZHENG S, WANG Q, YUAN Y. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chemistry, 2020(316): 126213.

[2] ALF, BAF, AJX. Remediation of soil contaminated with high levels of hexavalent chromium by combined chemical-microbial reduction and stabilization. Journal of Hazardous Materials, 2020, 403.

[3] YUAN W Y, XU W T, ZHANG Z W. Rapid Cr(VI) reduction and immobilization in contaminated soil by mechanochemical treatment with calcium polysulfide. Chemosphere, 2019(227):657-661.

[4] KHALID S, SHAHID M, NIAZ N K. A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 2017(182):247-268

[5] HATTORI T, FURUSAKA C.Chemical activities of Escherichia coli adsorbed on a resin. Biochimicate Biophysica Acta, 1959, 31(2):581-582.

[6] KUMARI D, QIAN X Y, PAN X. Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals. Advances in Applied Microbiology, 2016(94):79-108.

[7] OLANIRAN A O, BALGOBIND A, PILLAY B. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies. International Journal of Molecular ences, 2013, 14(5):10197-10228.

[8] ABBAS S H, ISMAIL I M, MOSTAFA T M. Biosorption of heavy metals: a review. Journal of Chemical Science and Technology, 2014(3):74-102.

[9] SULAYMON A H, AHMED A. ALMVSAWI T J. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae. Environmental science and Pollution Re-search, 2013, 20(5):3011-3023.

[10] LINA VELASQUEZ, JENNY DUSSAN. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. Journal of Hazardous Materials, 2009, 167(1):713-716.

[11] MARYAM A N, EZAT A, REZA D. Biosorption potential of Cr(VI)by Kocuria sp. ASB107, a radio-resistant bacterium isolated from Ramsar, Iran. Chemistry and Ecology. 2017, 34(2):163-176.

[12] MACHADO MD, JANSSENS S, SOARES HM. Removal of heavy metals using a brewer 's yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass.Journal of Applied Microbiology, 2009, 106(6):1792-1804.

[13] JING R, KJELLERUP B V. Biogeochemical cycling of metals impacting by microbial mobilization and immobilization. Journal of Environmental sciences, 2018, 66(4): 146-154.

[14] K.H. CHEUNG, JI-DONG GU. Mechanism of hexavalent chromium detoxification by microorganisms and bioreme-diation application potential: A review.International Biodeterioration & Biodegradation, 2007, 59(1):8-15.

[15] YIN W, LI Y, WU J. Enhanced Cr (VI) removal from groundwater by Fe0-H2O system with bio-amended iron corrosion. Journal of Hazardous Materials, 2017, 332 (JUN.15 ):42-50.

[16] BAYAT Z, HASSANSHAHIAN M, CAPPELLO S. Immobilization of Microbes for Bioremediation of Crude Oil Polluted Environments: A Mini Review. The Open Microbiology Journal, 2015(9):48-54.

[17] KOURKOUTAS Y, BEKATOROU A, BNANT IM. Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology, 2003, 21(4):377-397.

[18] Yuan Miaoxin. Enhanced remediation of polycyclic aromatic hydrocarbon contaminated soil by immobilized bacteria and influencing factors. Hangzhou: Zhejiang University, 2011.

[19] YU CM, YEN MJ, CHEN LC. A bioanode based on MWCNT/protein-assisted co-immobilization of glucose oxidase and 2,5-dihydroxybenzaldehyde for glucose fuel cells. Biosensors and Bioelectronics, 2010, 25 (11 ):2515-2521.

[20] WOJCIESZYNSKA D, HUPERTKOCUREK K, JNA-KOWSKA A. Properties of catechol 2,3-dioxygenase from crude extract of Stenotrophomonas maltophilia strain KB2 immobilized in calcium alginate hydrogels. Bio -chemical Engineering Journal, 2012(66):1-7.

[21] Wu Lan, Wan Jinbao. Study on the performance of immobilized Yarrowia lipolytica in treating oil wastewater. Journal of Environmental Engineering, 2008, 2 (4): 482-486.

[22] SIMARRO R, GONZALEZ, N, BAUTISTAL L F. Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: change in bacterial community.. Journal of Hazardous Materials, 2013(262): 158-167.

[23] PALIWAL R, UNIYAL S, RAI J. Evaluating the potential of immobilized bacterial consortium for black liquor bio -degradation.Environmental Science & Pollution Re-search, 2015, 22(9):6842-6853.

[24] WANG Y, YANG X, LI H. Immobilization of Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate.Polymer Degradation and Stability, 2006, 91(10): 2408-2414.

[25] TAN H, WANG C, LI H. Remediation of hexavalent chromium contaminated soil by nano-FeS coated humic acid complex in combination with Cr-resistant microflora. Chemosphere, 2020, 242 (Mar.): 125251. 1-125251. 10.

[26] Zheng Huanan, Song Qing, Zhu Yi, Meng Qingrui, Cui Xinhong. Removal of ammonia nitrogen from water by immobilized microorganisms on reed biochar composite carrier. Journal of Environmental Engineering, 2019, 13(2): 310-318.

[27] DIACONU M, PAVEL LV, HLIHOR RM. Characterization of heavy metal toxicity in some plants and microorganisms— A preliminary approach for environmental bioremediation. New biotechnology, 2020(56): 130-139.

[28] JAOUDE LA, CASTALDI P, NAISSIF N. Biochar and compost as gentle remediation options for the recovery of trace elements-contaminated soils. Science of The Total Environment, 2020(711):134511.

[29] PICCOLO A, SPACCINI R, De MARTINO A. Soil washing with solutions of humic substances from manure compost removes heavy metal contaminants as a function of humic molecular composition. Chemosphere, 2019, 225 (JUN.):150-156.

[30] WANG M, CHEN S, HAN Y. Responses of soil  aggregates and bacterial communities to soil-Pb immobilization induced by biofertilizer. Chemosphere, 2019, 220 (APR.):828-836.

[31] ZHOU S, XU J, YANG G. Methanogenesis affected by the cooccurrence of iron(III )oxides and humic substances. FEMS Microbiology Ecology, 2014,88(1):107-120.

[32] HOU S, WU B, LUO Y. Impacts of a novel strain QY-1 allied with chromium immobilizing materials on chromium availability and soil biochemical properties. Journal of Hazardous Materials, 2020(382):121093.

[33] MEIER S, CURAQEO G, KHAN N. Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil. Journal of Soils & Sediments, 2017, 17 (3): 741-750.

[34] MA H, WEI M, WANG Z. Bioremediation of cad-mium polluted soil using a novel cadmium immobilizing plant growth promotion strain Bacillus sp. TZ5 loaded on biochar. Journal of Hazardous Materials, 2020(388): 122065.

[35] TU C, WEI J, GUAN F. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil.. Environment International, 2020(137):105576.

[36] XU Y, SESHADRI B, SARKAR B. Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Science of The Total Environment, 2018 (621): 148-159.

[37] YANG X, LIU J, MCGROUTHER K. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environmental Science andPollution Research, 2016, 23(2): 974-984.

[38] LIU S J, LIU Y G, TAN X F. The effect of several activated biochars on Cd immobilization and microbial community composition during in-situ remediation of heavy metal contaminated sediment. Chemosphere, 2018(208): 655-664.

[39] EYYAZI B, JAMSHIDIZANJANI A, DARBAN A K. Immobilization of hexavalent chromium in contaminated soil using nano-magnetic MnFe2O4. Journal of Hazardous Materials, 2019(365): 813-819.

[40] PENG D, WU B, TAN H. Effect of multiple iron-based nanoparticles on availability of lead and iron, and micro-ecology in lead contaminated soil. Chemosphere, 2019(228): 44-53.

[41] KANG C H, KWON Y J, SO J S. Bioremediation of heavy metals by using bacterial mixtures. Ecological Engineering, 2016(89):64-69.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2024 Science, Technology, Engineering and Mathematics.   All Rights Reserved.