Science, Technology, Engineering and Mathematics.
Open Access

APPLICATION OF INTESTINAL MICROECOLOGICAL RESEARCH TECHNOLOGY IN METABOLIC SYNDROME

Download as PDF

Volume 2, Issue 2, Pp 3-8, 2024

DOI: 10.61784/jtlsv2n221

Author(s)

TieGang Wang

Affiliation(s)

Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China.

Corresponding Author

TieGang Wang

ABSTRACT

The mammalian intestine is home to a large number of complex microbiota, which together constitute the intestinal microbiome. In recent years, people have gradually realized that intestinal microorganisms are closely related to the occurrence and development of some diseases, such as metabolic diseases, inflammatory bowel diseases, tumors, immune system and neurological diseases, etc., making intestinal microorganisms a hot spot in research. The rapidly developing microbial research technology has provided us with an efficient and powerful technical platform, promoted the systematic understanding of intestinal microecology, and opened up new ideas for the diagnosis and treatment of diseases. This article aims to summarize and analyze the latest progress and limitations of commonly used microecological research technologies, provide a reference for further intestinal microbiome research, and briefly introduce the research results related to intestinal microecology and metabolic syndrome.

KEYWORDS

Intestinal microbiome; Single cell analysis; Culture method; Metabolic syndrome

CITE THIS PAPER

TieGang Wang. Application of intestinal microecological research technology in metabolic syndrome. Journal of Trends in Life Sciences. 2024, 2(2): 3-8. DOI: 10.61784/jtlsv2n221.

REFERENCES

[1] Qin J, Li R, Raes J. A human gut microbial gene catalog established by metagenomicsequencing. Nature, 2010, 464(7285): 59-65.

[2] Chassard C, Lacroix C. Carbohydrates and the human gut microbiota. Curr Opin Clin Nutr Metab Care, 2013, 16(4):453-460.

[3] Bengmark S. Gut microbial ecology in critical illness: is there a role for prebiotics, probiotics, and synbiotics? Curr Opin Crit Care, 2002, 8(2):145-151.

[4] Kabat AM, Srinivasan N, Maloy KJ. Modulation of immune development and function by intestinal microbiota. Trends Immunol, 2014, 35(11):507-517.

[5] Gensollen T, Iyer SS, Kasper DL. How colonization by microbiota in early life shapes the immune system. Science, 2016, 352(6285):539-544.

[6] Flint HJ, Duncan SH, Scott KP. Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol, 2007, 9(5):1101-1111.

[7] Liu DQ, Gao QY, Liu HB. Probiotics improve survival of septic rats by suppressing conditioned pathogens in ascites. World J Gastroenterol, 2013, 19(25):4053-4059.

[8] Vartoukian SR, Palmer RM, Wade WG. Strategies for culture of ′unculturable′ bacteria. FEMS Microbiol Lett, 2010, 309(1):1-7.

[9] Claesson MJ, Wang Q, O′Sullivan O. Comparison of two next- generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res, 2010, 38(22):e200.

[10] Hiergeist A, Reischl U, Gessner A. Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability. Int J Med Microbiol, 2016, 306(5): 334-342.

[11] Turnbaugh PJ, Quince C, Faith JJ. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Nati Acad Sci U SA, 2010, 107(16):7503-7508.

[12] Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and in?ammatory bowel disease. Proc Nati Acad Sci U SA, 2012, 109(2):594-599.

[13] Schlois snig S, Arumugam M, Sunagawa S. Genomic variation landscape of the human gut microbiome. Nature, 2013, 493(7430):45-50.

[14] Tolonen AC, Xavier RJ. Dissecting the human microbiome with single-cell genomics. Genome Med, 2017, 9(1):56.

[15] Rinke C, Schwientek P, Sczyrb A. Insights into the phylogeny and coding potential of microbial dark matter. Nature, 2013, 499(7459):431-437.

[16] Woyke T, Xie G, Copeland A. Assembling the marine metagenome, one cell at a time. PloS One, 2009, 4(4):e5299.

[17]  Marcy Y, Ouverney C, Bik EM. Dissecting biological ″dark matter ″ with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Nati Acad Sci U S A, 2007, 104(29):11889-11894.

[18] Lagier JC, Armougom F, Million M. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect, 2012, 18(12):1185-1193.

[19] Lagier JC, Khelaifia S, Alou MT. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol, 2016, 1:16203.

[20] Lagkouvardos I, Overmann J, Clavel T. Cultured microbes represent a substantial fraction of the human and mouse gut microbiota. Gut Microbes, 2017, 8(5):493-503.

[21] Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract, 2014, 2014:943162.

[22] B?ckhed F, Ding H, Wang T. The gut microbiota as an environmental factor that regulates fat storage. Proc Nati Acad Sci U SA, 2004, 101(44):15718-15723.

[23] Turnbaugh PJ, Ley RE, Mahowald MA. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122):1027-1031.

[24] Di Luccia B, Crescenzo R, MazzoliA. Rescue of fructose-induced metabolic syndrome by antibiotics or faecaltransplantation in a rat model of obesity. PloS One, 2015, 10(8):e0134893.

[25] Guo X, Xia X, Tang R. Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol, 2008, 47(5):367-373.

[26] Jumpertz R, Le DS, Turnbaugh PJ. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr, 2011, 94(1):58-65.

[27] Schwiertz A, Taras D, Sch?fer K. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring), 2010, 18(1):190-195.

[28] Santacruz A, Collado MC, García-Valdés L. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr, 2010, 104(1): 83-92.

[29] Pedersen HK, Gudmundsdottir V, Nielsen HB. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature, 2016, 535(7612):376-381.

[30] Li J, Lin S, Vanhoutte PM. AkkermansiaMuciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia- Induced In?ammation in Apoe-/-Mice. Circulation, 2016, 133(24): 2434-2446.

[31] Kang JH, Yun SI, Park MH. Anti-obesity e?ect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PloS One, 2013, 8(1): e54617.

[32] Zhou AL, Hergert N, Rompato G. Whole grain oats improve insulin sensitivity and plasma cholesterol profile and modify gut microbiota composition in C57BL/6J mice. J Nutr, 2015, 145(2): 222-230.

[33] Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther, 2011, 34(3):274-285.

[34] Compare D, Coccoli P, Rocco A. Gut--liver axis: the impact of gut microbiota on non alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis, 2012, 22(6):471-476.

[35] Le RT, Llopis M, Lepage P. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut, 2013, 62(12):1787-1794.

[36] Zhu L, Baker SS, Gill C. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology, 2013, 57(2): 601-609.

[37] Grat M, Wronka KM, Krasnodebski M. Pro?le of gut microbiota associated with the presence of hepatocellular cancer in patients with liver cirrhosis. Transplantat Proc, 2016, 48(5): 1687-1691.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2024 Science, Technology, Engineering and Mathematics.   All Rights Reserved.