Science, Technology, Engineering and Mathematics.
Open Access

INVESTIGATIONS INTO THE UTILIZATION OF PLURIPOTENT STEM CELLS FOR EVALUATING NEURODEVELOPMENTAL TOXICITY

Download as PDF

Volume 6, Issue 2, Pp 11-15, 2024

DOI: 10.61784/jpmrv6n219

Author(s)

Karin Taxvig

Affiliation(s)

Technical University of Denmark, 2800, Kongens Lyngby, Denmark.

Corresponding Author

Karin Taxvig

ABSTRACT

Induced pluripotent stem cells are a cell type similar to embryonic stem cells obtained by inducing mature somatic cells to express specific genes [1]. Both iPSCs and ESCs have the ability of unlimited proliferation and multi-lineage differentiation in vitro, and both play important roles in drug screening, cell therapy, etc. However, iPSCs come from a wide range of sources and are easy to obtain, and their acquisition can avoid medical ethical issues. Traditional developmental toxicity research methods not only require a large number of experimental animals, but also have long experimental cycles, cumbersome operations, and species differences. In 1981, Evans and Kaufman [2] first obtained mouse ESCs from the inner cell mass of mouse blastocysts. In 1997, Spielmann et al. [3] established an in vitro alternative model "embryonic stem cell test" by using the characteristics of mouse ESCs to differentiate into the three germ layers, and it became a classic method for in vitro developmental toxicity research. Subsequently, human ESCs and human iPSCs were obtained and used in in vitro surrogate models of developmental toxicity. The application of these human cells solved the problem of species differences [4-6]. The in vitro developmental toxicity model was initially used to evaluate the toxic effects of chemicals through the differentiation of pluripotent stem cells into myocardium. Later, the products of differentiation into other lineages were gradually applied to this model.

KEYWORDS

Stem cells; Nerve; Neurodevelopment; Toxicity model

CITE THIS PAPER

Karin Taxvig. Investigations into the utilization of pluripotent stem cells for evaluating neurodevelopmental toxicity. Journal of Pharmaceutical and Medical Research. 2024, 6(2): 11-15. DOI: 10.61784/jpmrv6n219.

REFERENCES

[1]  Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4):663-676.

[2]  Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292(5819):154-156.

[3]  Spielmann H, Pohl I, Doring B. The embryonic stem cell test (EST), an in vitro embryotoxicity test using two permanent mouse cell lines: 3T3 fibroblasts and embryonic stem cells. In Vitro Toxicol, 1997, 10(1):119-127.

[4]  Aikawa N, Kunisato A, Nagao K. Detection of thalidomide embryotoxicity by in vitro embryotoxicity testing based on human iPS cells. J Pharmaco Sci, 2014, 124(2):201-207.

[5]  Fang H, Zhi Y, Yu Z. The embryonic toxicity evaluation of deoxynivalenol (DON) by murine embryonic stem cell test and human embryonic stem cell test models. Food Control, 2018, 86:234-240.

[6]  Luo S, Fang HQ, Yang H. Comparison of embryotoxicity of di(2-ethylhexyl) phthalate using mouse and human embryonic stem cell test models in vitro. Chin J Prev Med, 2016, 50(7):645-651. (in Chinese)

[7]  Rice D, Barone SJ. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect, 2000, 108 Suppl 3:511-533.

[8]  Kraft AD, Aschner M, Cory-Slechta DA. Unmasking silent neurotoxicity following developmental exposure to environmental toxicants. Neurotoxicol Teratol, 2016, 55:38-44.

[9]  Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol, 2014, 13(3):330-338.

[10]  Yi H, Xie B, Liu B. Derivation and identification of motor neurons from human urine-derived induced pluripotent stem cells. Stem Cells Int, 2018, 2018:3628578.

[11]  Santos DP, Kiskinis E. Generation of spinal motor neurons from human pluripotent stem cells. Methods Mol Biol, 2017, 1538:53-66.

[12]  Datta I, Ganapathy K, Tattikota SM. Directed differentiation of human embryonic stem cell-line HUES9 to dopaminergic neurons in a serum-free defined culture niche. Cell Biol Int, 2013, 37(1):54-64.

[13]  Kawasaki H, Mizuseki K, Nishikawa S. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron, 2000, 28(1):31-40.

[14]  Hu Y, Qu ZY, Cao SY. Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells. J Neurosci Methods, 2016, 266:42-49.

[15]  Vazin T, Ball K A, Lu H. Efficient derivation of cortical glutamatergic neurons from human pluripotent stem cells: a model system to study neurotoxicity in Alzheimer's disease. Neurobiol Dis, 2014, 62:62-72.

[16]  Pei Y, Peng J, Behl M. Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes. Brain Res, 2016, 1638(PtA):57-73.

[17]  Bian J, Zheng J, Li S. Sequential differentiation of embryonic stem cells into neural epithelial-like stem cells and oligodendrocyte progenitor cells. PLoS One, 2016, 11(5):e155227.

[18]  Arber C, Precious SV, Cambray S. Activin A directs striatal projection neuron differentiation of human pluripotent stem cells. Development, 2015, 142(7):1375-1386.

[19]  Reichman S, Slembrouck A, Gagliardi G. Generation of storable retinal organoids and retinal pigmented epithelium from adherent human iPS cells in Xeno-free and feeder-free conditions. Stem Cells, 2017, 35(5):1176-1188.

[20]  Matsuoka AJ, Morrissey ZD, Zhang C. Directed differentiation of human embryonic stem cells toward placode-derived spiral ganglion-like sensory neurons. Stem Cells Transl Med, 2017, 6(3): 923-936.

[21]  Pamies D, Barreras P, Block K. A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX, 2017, 34(3):362-376.

[22]  Schwartz MP, Hou Z, Propson NE. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proc Natl Acad Sci U SA, 2015, 112(40):12516-12521.

[23]  Druwe I, Freudenrich TM, Wallace K. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening. Toxicology, 2015, 333:14-24.

[24]  Tiwari SK, Agarwal S, Chauhan LK. Bisphenol-A impairs myelination potential during development in the hippocampus of the rat brain. Mol Neurobiol, 2015, 51(3):1395-1416.

[25]  Visan A, Hayess K, Sittner D. Neural differentiation of mouse embryonic stem cells as a tool to assess developmental neurotoxicity in vitro. Neurotoxicology, 2012, 33(5):1135-1146.

[26]  Guan S, Xu J, Guo Y. Pyrroloquinoline quinone against glutamate-induced neurotoxicity in cultured neural stem and progenitor cells. Int J Dev Neurosci, 2015, 42:37-45.

[27]  Augustyniak J, Lenart J, Zychowicz M. Sensitivity of hiPSC- derived neural stem cells (NSC) to Pyrroloquinoline quinone depends on their developmental stage. Toxicol In Vitro, 2017, 45(Pt 3):434-444.

[28]  Menzner AK, Gilbert DF. A protocol for in vitro High-throughput chemical susceptibility screening in differentiating NT2 stem cells. Methods Mol Biol, 2017, 1601:61-70.

[29]  Inohana M, Eguchi A, Nakamura M. Developmental exposure to aluminum chloride irreversibly affects postnatal hippocampal neurogenesis involving multiple functions in mice. Toxicological Sci, 2018, 164(1):264-277.

[30]  Yang D, Lein PJ. Polychlorinated biphenyls increase apoptosis in the developing rat brain. Curr Neurobiol, 2010, 1(1):70-76.

[31]  Mori H, Sasaki G, Nishikawa M. Effects of subcytotoxic cadmium on morphology of glial fibrillary acidic protein network in astrocytes derived from murine neural stem/progenitor cells. Environ Toxicol Pharmacol, 2015, 40(2):639-644.

[32]  Parsons-White AB, Spitzer N. Environmentally relevant manganese overexposure alters neural cell morphology and differentiation in vitro. Toxicol In Vitro, 2018, 50:22-28.

[33]  Zimmer B, Lee G, Balmer NV. Evaluation of developmental toxicants and signaling pathways in a functional test based on the migration of human neural crest cells. Environ Health Perspect, 2012, 120(8):1116-1122.

[34]  Nyffeler J, Karreman C, Leisner H. Design of a high-throughput human neural crest cell migration assay to indicate potential developmental toxicants. ALTEX, 2017, 34(1):75-94.

[35]  Ryan KR, Sirenko O, Parham F. Neurite outgrowth in human induced pluripotent stem cell-derived neurons as a high-throughput screen for developmental neurotoxicity or neurotoxicity. Neurotoxicology, 2016, 53:271-281.

[36]  Rai NK, Ashok A, Rai A. Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and retina. ToxicolAppl Pharmacol, 2013, 273(2):242-258.

[37]  Barateiro A, Fernandes A. Temporal oligodendrocyte lineage progression: in vitro models of proliferation, differentiation and myelination. Biochim Biophys Acta, 2014, 1843(9):1917-1929.

[38]  Yl?-Outinen L, Heikkil? J, Skottman H. Human cell-based micro electrode array platform for studying neurotoxicity. Front Neuroeng, 2010, 3:111.

[39] Cicero CE, Mostile G, Vasta R. Metals and neurodegenerative diseases. A systematic review. Environ Res, 2017, 159:82-94.

[40] Caito S, Aschner M. Neurotoxicity of metals. Handb Clin Neurol, 2015, 131:169-189.

[41] Chandravanshi LP, Gupta R, Shukla RK. Developmental neurotoxicity of arsenic: involvement of oxidative stress and mitochondrial functions. Biol Trace Elem Res, 2018, 186(1):185-198.

[42] Cariccio VL, Samà A, Bramanti P. Mercury involvement in neuronal damage and in neurodegenerative diseases. Biol Trace Elem Res, 2019, 187(2):341-356.

[43] Pamies D, Block K, Lau P. Rotenone exerts developmental neurotoxicity in a human brain spheroid model. Toxicol Appl Pharmacol, 2018, 354:101-114.

[44] O'Carroll D, Schaefer A. General principals of miRNAbiogenesis and regulation in the brain. Neuropsychopharmacology, 2013, 38(1):39-54.

[45] Jiang C, Logan S, Yan Y. Signaling network between the dysregulated expression of microRNAs and mRNAs in propofol-induced developmental neurotoxicity in mice. Sci Rep, 2018, 8(1):14172.

[46] Schmuck MR, Temme T, Dach K. Omnisphero: a high-content image analysis (HCA) approach for phenotypic developmental neurotoxicity (DNT) screenings of organoid neurosphere cultures in vitro. Arch Toxicol, 2017, 91(4):2017-2028.

[47] Joshi P, Yu K, Kang S. 3D-cultured neural stem cell microarrays on a micropillar chip for high-throughput developmental neurotoxicology. Exp Cell Res, 2018, 370(2):680-691.

[48] Gazina EV, Morrisroe E, Mendis GDC. Method of derivation and differentiation of mouse embryonic stem cells generating synchronous neuronal networks. J Neurosci Methods, 2018, 293:53-58.

[49] Sandstr?m J, Eggermann E, Charvet I. Development and characterization of a human embryonic stem cell-derived 3D neural tissue model for neurotoxicity testing. Toxicol In Vitro, 2017, 38:124-135.

[50] Seidel D, Obendorf J, Englich B. Impedimetric real-time monitoring of neural pluripotent stem cell differentiation process on microelectrode arrays. Biosens Bioelectron, 2016, 86:277-286.

[51] Harry GJ, Billingsley M, Bruinink A. In vitro techniques for the assessment of neurotoxicity. Environ Health Perspect, 1998, 106 Suppl 1: 131-158.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2024 Science, Technology, Engineering and Mathematics.   All Rights Reserved.