Science, Technology, Engineering and Mathematics.
Open Access

PERFORMANCE DETERIORATION AND MICROSTRUCTURE OF VITRIFIED MICROBEAD INSULATION CONCRETE AFTER HIGH TEMPERATURE

Download as PDF

Volume 2, Issue 2, Pp 5-14, 2024

DOI: 10.61784/wjmsv2n245

Author(s)

Leandro T. Azevedo

Affiliation(s)

State University of the Northern Rio de Janeiro, Brazil.

Corresponding Author

Leandro T. Azevedo

ABSTRACT

Prepare ordinary concrete (NC) and vitrified microbead insulation concrete (GHB/NC), and study the deterioration process of changes in apparent phenomena, quality, loss of compressive strength and other properties after heating from normal temperature to 1000°C, and discuss ultrasonic non-destructive testing at the same time The method is used to evaluate the universality of the performance of concrete after high temperatures, comparatively analyze the relationship between relative wave speed, damage degree, heating temperature, and compressive strength loss rate, and use SEM to observe the microstructural changes of specimens after different high temperatures. The results show that the use of relative wave speed and damage degree to evaluate the performance of concrete after high temperature has good correlation, and the regression formula has a high fitting degree; as the temperature increases, the internal damage of NC and GHB/NC concrete gradually intensifies, and the cement gelation decomposes due to heat and moisture Dissipation, etc. produce gaps, cracks and interconnections on the surface and inside of the specimen, and the bonding force at the interface between vitrified microspheres, coarse aggregate and cement stone gradually weakens or even loses, causing the macroscopic mechanical properties to deteriorate and the compressive strength loss rate to increase. After heating to 800℃, the strength loss of NC is 72.3%, the strength loss of GHB/NC is 74.6%, and the load-bearing capacity is basically lost at 1000℃.

KEYWORDS

Vitrified microbead insulation concrete; High temperature; Ultrasonic nondestructive testing; Performance degradation; Microscopic analysis; Interface transition zone

CITE THIS PAPER

Leandro T. Azevedo. Performance deterioration and microstructure of vitrified microbead insulation concrete after high temperature. World Journal of Materials Science. 2024, 2(2): 5-14. DOI: 10.61784/wjmsv2n245.

REFERENCES

[1] Guo Xingzhong, Yang Chuang, Zhang Chao. Simulation study on the impact of thermal performance of energy-saving doors and windows on building energy consumption. Journal of Building Materials, 2014, 17(2): 261- 265, 297.

[2] Hong Tianzhen. A close look at the China design standard for energy efficiency of public buildings. Energy and Buildings, 2009, 41(4): 426-435.

[3] FANShujing, WANG Peiming. Effect of fly ashondrying shrinkage of the rmalinsulation mortar with glazed hollow beads. Journal of Wuhan University of Technology (Materials Science Edition), 2017, 32(6): 1352- 1360.

[4] Sadinenisb, Madalas, Boehm RF. Passive Building energy savings: A review of building envelope components. Renewable and Sustainable Energy Reviews, 2011, 15 (8): 3617-3631.

[5] Gong Jianqing, Sun Kaiqiang. Effects of different water-cement ratios on the performance of vitrified microsphere thermal insulation mortar. Journal of Hunan University (Natural Science Edition), 2017, 44(1): 143- 149.

[6] Zhu Jiang, Li Guozhong. Performance of polypropylene fiber vitrified microsphere composite insulation materials. Journal of Building Materials, 2015, 18(4): 658- 662, 703.

[7] Wu Wenjie, Yu Yiming. Study on the mix ratio of vitrified microbead thermal insulation mortar based on single factor analysis. Materials Herald, 2014, 28(24): 385-390.

[8] Ma Gang, Zhang Yu, Li Zhu. Influencing factors on the interface micro hardness of lightweight concrete aggregate consisting of glazed hollow bead. Advances in Materials Science and Engineering, 2015, 2015: 1- 15.

[9] Zhao Lin, Wang Wenjing, Li Zhu. An Experimental study to evaluate the effects of adding glazed hollow beads on the mechanical properties and thermal conductivity of concrete. Materials Research Innovations, 2015, 19(S5): 929- 935.

[10] Zhang Yu, Ma Gang, Wang Zhangfeng. Shear behavior of reinforced glazed hollow bead insulation concrete.Construction and Building Materials, 2018, 174: 81-95.

[11] Dai Xueling, Zhao Huawei, Li Zhu. Research on the application of vitrified microspheres in self-insulating walls. Engineering Mechanics, 2010, 27(S1): 172- 176, 183.

[12] Gong Jianqing, Deng Guiguo, Shan Bo. Ultrasonic research and microscopic analysis of reactive powder concrete after high temperature. Journal of Hunan University (Natural Science Edition), 2018, 45(1): 68-76.

[13] Heap M J, Lavallee Y, Laumann A. The influence of thermal-stress ( upto1000℃) onthe physical, mechanical, and chemical properties of siliceous-aggregate, high-strength concrete . Construction and Building Materials, 2013, 42: 248-265.

[14] SHAIKH FU A., TAWEEL M. Compressive strength and failure behaviour offibre concrete at elevated temperatures . Advances in Concrete Construction, 2015, 3 (4): 283-293.

[15] Xiong Houren, Xu Jinming, Liu Yuanzhen. Experimental study on hygrothermal deformation of external thermal insulation cladding systems with glazed hollow bead. Advances in Materials Science and Engineering, 2016, 2016: 1- 14.

[16] Pang Jianyong, Yao Weijing. Experimental study on new thermal insulation materials for high-temperature tunnels in deep coal mines. Mining Research and Development, 2016, 36(2): 76-80.

[17] Zhao Dongfu, Liu Mei. Experimental study on residual strength and non-destructive testing of high-strength concrete after high temperature. Journal of Building Structures, 2015, 36(S2): 365-372.

[18] Peng Gaifei, Yang Juan, Shi Yunxing. Experimental study on the residual mechanical properties of ultra-high performance concrete after high temperature. Journal of Civil Engineering, 2017, 50(4): 73-79.

[19] Peng Gaifei, Huang Zhishan. Change in micro structure of hardened cement plaster subjected to elevated temperatures.Construction and Building Materials, 2008, 22(4): 593-599.

[20] Jiang Yuchuan, Huo Da, Teng Haiwen. Research on the high temperature performance characteristics of shale ceramsite concrete. Journal of Building Materials, 2013, 16(5): 888-893.

[21] Gong Jianqing, Deng Guoqi, SHAN Bo. Performance evaluation of RPC exposed to high temperature combining ultrasonic test: A case study. Construction and Building Materials, 2017, 157: 194-202.

[22] Yan Lan, Xing Yongming. Effect of nano-SiO2 on the mechanical properties and microstructure of steel fiber/concrete after high temperature. Journal of Composite Materials, 2013, 30(3): 133-141.

[23] Jin Zuquan, Sun Wei, Hou Baorong. High-temperature deformation and microstructural evolution of concrete. Journal of Southeast University (Natural Science Edition), 2010, 40(3): 619-623.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2024 Science, Technology, Engineering and Mathematics.   All Rights Reserved.