

Journal of Computer Science and Electrical Engineering ISSN:xxxx-xxxx

A PARALLEL COMPUTING FRAMEWORK FOR CLOUD

SERVICES

Ai Fang1*, Xue Hu2, Cong Chen3, Zhuan Sheng4
1School of Information Engineering, Suzhou University, Suzhou Anhui, 234000, China

2School of Computer and Information, Hefei University of Technology, Hefei 230009, China
3University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China

4Beijing Institute of Control Engineering, Beijing 100190, China

Abstract

In recent years, the requirements of computer performance for large data processing are getting higher and

higher. From the perspective of users, in order to conveniently use big data processing platform, and put

more focus on writing the parallel computing algorithm. This paper presents a study of cloud service,

parallel computing, IronPython and virtualization, and designs client, service node and node calculation

module by using Python for its ability of self-reflexive and observation and calling the library functions of

which cannot be achieved using other languages. In this paper, the parallel computing framework based on

Python can be easily implemented on the virtual machine of the cloud computing platform.
Keywords: Cloud Services; SOA; Python; Parallel Computing.

1. INTRODUCTION

Nowadays, along with the change of computer

application technologies, people’s requirements are

imperceptibly changed, especially for processing power

of the computer. The requirements for storage and speed

in early 90s of last century driven the development of

large computer data processing ability [1-3]. With PC

computer software and hardware being accepted and the

architecture of PC computer becoming more and more

mature, more and more PC based supercomputers, such

cluster systems have generally existed and occupied a

very good position in terms of performance.

After the emergence of the new concept Service

Oriented Architecture (SOA), the role of the Internet has

been fully reflected due to its ability to establish

relationships between the different platforms. For such a

role, the computer resources management become what

can be achieved through the internet. Using the

functions provided by the Internet to achieve cross

platform management of computer resources has

become increasingly common [4].

However, in recent decades, parallel software

technology has not made breakthrough progress due to

the need to fundamentally solve these existing parallel

programming problems, such as how to code the use of

cross platform and how to compile and execute

automation problems. The problem of control

dependence and data dependence has become the first

problem to be solved in parallel computing, and has

been in the process of being discussed and solved by the

researchers in the [4].

This paper presents a study of cloud service, parallel

computing, IronPython and virtualization to design

client, service node and node calculation module by

using Python for its ability of self-reflexive and

observation, by taking into account the case that users

may face the restriction of computer performance and

the installation and operational of database upgrade

when they are in the use of parallel computing in the

process. Combining cloud computing technologies and

parallel computing technologies can solve the current

provides a lot of convenience for users, while the

problems from the external environment do not need to

be considered, which enables users to put more energy

in the parallel computing algorithm [5-8].

2. RELATED WORKS

Service Oriented Architecture (SOA), the technology

already of which has existed first to be known in 1983,

but did not get attention, mainly refers to the dispersion

in the Internet space service of an integrated in this

architecture inside each service and other services to

each other to send information, for an interactive [1].

The interaction not only as stated above, it also contains

a mutual contact application service and service; or

between service and service through the use of an

agreement is the agreement as a basis for a specific

combination of mutual cooperation in the way to

achieve some requirements [9].

When users need parallel computing, the service nodes

can compute resources for these users to complete the

calculation, we call this kind of computing resources for

parallel, doing so provides service in order to give more

computation requests, and better finish the calculation.

In this case, this kind of service can be regarded as

parallel computing services, and has the advantages of

large data processing and a lot of time and ability to

service.

The open service grid system (OGSA) is the first time

we have learned that it is in the relevant experiments,

and this experiment is called Globus. The service

oriented architecture is the most critical part of the grid

architecture. OGSA is a kind of service oriented

architecture which is more perfect than web Service, and

it has dynamic characteristics, which can dynamically

10 Fang Ai

VOLUME 1, ISSUE 1, PP 9-16, MARCH 2019

create and delete the service instance [10]. OGSA

platform is able to better combine the existing

technology, make full use of the existing technology and

hardware and software resources, to better realize the

idea of the grid. With the further research and

application of OGSA, it will become more and more

perfect, and will eventually become one of the most

important architecture of distributed resource sharing

and service.

The basic service interface standard for high

performance computing (HPC Basic Profile) is a kind of

high performance computing grid access standard, by

the open grid OGF (Open Grid Forum) for Web Service

based on [10]. IBM, Microsoft and other companies and

a number of research institutions to carry out some

research behind together gives this standard,

implemented in Web Service technology, when

computing tasks will be submitted, to be authorized

users to complete, and to manage the related resources.

3. CLOUD SERVICES ORIENTED PARALLEL

COMPUTING ARCHITECTURE

Parallel computing services for cloud services Python

parallel computing system corresponds to the

application service layer in the cloud platform service

hierarchy. Parallel computing is provided to users in the

form of a service. Cloud services oriented Python

parallel computing system is the use of Python to

achieve the client and server, where the users can spend

more time and energy on writing code, without needing

to consider other external factors, especially the

problems in the deployment environment. This paper

first introduces the traditional parallel computing cluster,

and focuses on the Python parallel computing

framework for cloud services.

3.1 Traditional parallel computing cluster

Fig. 1 shows a network configuration diagram of a

well-known parallel computing cluster. A computing

cluster includes several functional modules as follows:

client, this part mainly realizes the interaction with the

user, accept and explain computing services to users, but

also through the network environment and the service

node complex communication links, to accept the results

of the parallel computing nodes also forwarded the

request [11]. The service node probably comprises the

following: (1) the first to accept the request of the user

for analysis then forwarding; (2) will accept the user's

request for storage of statistics; (3) to interact with the

control node, the cluster information dynamic

monitoring; (4) communicating with the control node,

can how to achieve the forwarding computation request;

(5) and a control node by computing nodes allocation of

communication resources monitoring, calculation and

results of [1] transceiver request; (6) timely monitor

node performance, improve the corresponding code; (7)

can save results from the calculation nodes. Control

node, in fact, this part in order to achieve specific

monitoring. Computing nodes, the task of this module is

very simple, is responsible for handling user requests

from the service node and the final result to send [12].

User Client Server ClusterInternet or LAN

Fig.1. Traditional Parallel Computing Cluster

3.2 Python parallel computing framework for cloud

services

The above section introduces the traditional parallel

computing cluster, next we present an overall design of

the cloud service-oriented Python parallel computing

system from the business logic, knowledge oriented

cloud services Python parallel computing framework,

the logic chart of which is shown in Fig. 2.

System Monitor

Presentation Layer

Client

Business Logic Layer

System Controller Layer Cloud Monitor

System management

VM Management

VM Instance

ISO Image

Python Parallel Tasks

Distribution

Application Management

VM Creation and

Configuration

VM Management

Configuration Center

Physical Machine

Monitor

VM Monitor

Log Query

User Access Log

System Run Log

Server Interface

Management

Interface Module

VM Interface

Management

Integration

Monitor

Plugin

Processing

Communication

Data Persistence Layer

Server Cluster

KVM Virtual Machine Hyper-V Cluster

Fig.2.The Logical Architecture of Python Parallel

Computing System For Cloud Services

3.3 overall system architecture and functional

modules

According to logic of Python parallel computing system

in Fig. 2, this section will refine the module functions,

the each module and the corresponding overall

architecture is shown in Figure 3. We next introduce the

function modules of the whole system:

(1) For receiving the request from the client computing

interface, when receiving a calculation request, client

computing interface does not immediately forward

which needs task queue request storage which is the

achieved table structure in Python, finally wait to

request the results of the query scheduling;

(2) For the request queue mentioned above, how to

schedule the request in the queue, is based on user

defined strategy to carry out, is not the same.as long as

this is achieved through the corresponding priority, the

use of the simplest and most common first come first

served to achieve the specific requirements of the

scheduling. That is, all requests from the client after the

A Parallel Computing Framework For Cloud Services 11

VOLUME 1, ISSUE 1, PP 9-16, MARCH 2019

arrival of the arrival time in accordance with the order

and priority scheduling;

Client

1.Receive Computing Requests
2.Computin

g Cluster

3.Controller

4.Computing
cluster

5.Cluster

Monitor

6.Database

Cluster

Schedule

Requtest

Computing Requests

Computing Requests

State Update

State Update

Cluster State

Fig. 3. System Module Function and Architecture

(3) The primary work of the controller is to monitor the

calculation of node resources, and the dynamic

monitoring, real time database cluster node information

exists, then according to the user's request to query the

state calculation, the node forward calculation request;

the controller not only has said above also has function

error handling ability, how to deal with the failure of the

calculation request will be decided by the system

strategy, a simple method of the first thought is the

calculation request returns to the queue, or in a certain

period of time after the drop, which can also be

calculated node processing error report to the service

node, so that the next time you can not this node sends a

request to the controller; will not stop the calculation

according to the status of the cluster in the cluster

database update information, to send customized

strategy Finally, the decision is forwarded to the

computing cluster. Finally, the controller updates the

status of all the computing clusters to the database in

real time;

(4) Calculate the cluster receiving and calculate the

request, mainly use the standard Web service interface

to carry on the work of the cluster and the allocation of

resources, and return the result;

(5) The cluster monitoring system is mainly used in

computing nodes to install the plug-in program, and a

monitoring server in the control node, to complete the

monitoring of each cluster or node state, and real-time

monitoring of the information in the database is updated,

in order to ensure that the controller can make the

distribution decision is calculated according to the

cluster / latest node state information, and analyze the

overall performance of computing cluster performance

data to make a decision, which has been the most

efficient use of computing resources;

(6) The whole cluster or clusters within each computing

node state information is the information interactive

resource monitor and data acquisition, dynamic storage

in the database cluster, the cluster database not only

saved the state now features of computing nodes, state

information can also be recorded before, can be

provided to other parts of the query read and write.

3.3.1 Client function module

Fig. 4 (a) shows the client module that is mainly

responsible for the parallel program, creating the client,

receiving a print transmitted request and used to

calculate the results, and this module will parallel

computing code forwarded to the client module. The

client module, analysis from the user computing

function call information and related data; and encoding,

will then called from the compute nodes of Python

computing services and obtain the corresponding results.

Fig. 4 (b) is the client module function further detailed

architecture, according to the above 4 (b) in the digital

to functional description: (1) the client creates after the

parallel computing code analysis function; (2) to obtain

a function name as a parameter to the transmission

module, transmission to the client library transmission

module; (3) specific parameters; (4) and the calculation

results to the client; (5) according to the specific code to

obtain the parameters of parallel computing.

Fig. 5 is the client library module further detailed

architecture, according to figure 5 to give the functional

description: (1) according to the analysis of parameters

from the client and according to the analysis of the

situation to acquire source code; (2) to obtain the source

code, based on the analysis of the relevant parameters

call function to obtain the original code; (3) for the code

to call the library function is compressed to cpickle, to

the transmission module; (4) through the WCF

configuration, the calculation results using the relevant

protocol is transmitted to the server and receiving

server; (5) back the settlement results to the client

module.

(a) Client Module

(b) Client Module and their function

Client

Module

Client

Module

Client

Creation

Parallel

Computing

Module

Client

Library

Module

Parallel

Computing

Module

1 4

3

25

Data

Transfer

Fig. 4. Client Modules and Their Functions

3.3.2 Server function module

In figure 6 (a), the server module of the communication

between each other is described, and the following

modules are described in detail. Figure 6 (b) is a more

detailed framework for the functionality of the service

node module, which is described in the figure above:

(1) the calculation request is forwarded to the

calculation data analysis module for data analysis, and

the calculation data and source code are obtained;

(2) the data analysis on the calculation request, a

detailed understanding of the request attribute, will

calculate the request data added to the task of

12 Fang Ai

VOLUME 1, ISSUE 1, PP 9-16, MARCH 2019

transponder module task queue, waiting for the request

to be forwarded;

1

22

Analysis Module

Source Code

Acquisition Module

Request

Forwarding

Module

Client Module

Client Module

3

5

22

Fig. 5. Client Library Module Function Diagram

（a）Server Architecture

Services Node

Module

Information

Query

Controller

Module

Computing Node

Module

Request and Response Resource Monitor

Request

Module

Data

Analysis

Module

Task

Forwarding

Module

1

2

Computing

Node Query

3

Computing

Node
7

 Results

Return

Module

8

Resource

Monitor

4

Database

Cluster

5

Data

Acquisition

Module
6

9

（b）Server Function Module
Fig. 6. Server Architecture and Its Functions

(3) the query request is sent to the query module of the

computing node, and the module is queried according to

the specific request;

(4) according to the concrete request, to carry on the

corresponding inquiry to the database, and to obtain the

desired result;

(5) the resource monitor will store the data from the data

collector and store it in real time in order to ensure that

the state of the computing node is the latest;

(6) the data acquisition request and the return of the

specific information data are performed by the heartbeat

between the resource monitor and the data collector;

(7) the task distribution module forwards the

computation request and forwards it to the

corresponding computing node through the

corresponding query;

(8) the calculated results are given to the returning

module on the computing node, and the result is

returned.

According to Fig. 6 (b), the specific function of the

service node is described in detail:

(1) the accepted calculation request to the Ironpython

interface module;

(2) the Ironpython interface module completes the

specific data and code loading by creating the

Ironpython engine;

(3) the computing data which is loaded by the

Ironpython engine is transmitted to the data analysis

module of the, the data and the environment property

are extracted, and the source code is restored;

(4) the calculated data and the source code are compiled

dynamically, and the calculation is carried out;

(5) transfer the calculated results to the result return

module;

(6) this function has been introduced at the service node.

3.4 Python parallel computing system flow

This section elaborates the SOA Python parallel

computing process. Figure 7 is a Python parallel

computing process, and the calculation of the specific

process has been marked in the figure below, to describe

the each step and to have an overall understanding of the

system:

(1) the concurrent computation starts from a client who

carries on the parallel algorithm programming, and calls

the library function to carry on the computation attribute

the compression, in order to calculate the request to be

possible to transmit to the service node. Cloud

computing services for Python parallel computing client

library program through the complex extraction of the

relevant functions needed to calculate and Python

runtime environment. The data using the Python library

to calculate these packaged data, function and status

information, finally using the related protocol for

transmission of parallel computing requests, which used

the Web Service protocol to Parallel Computing

Oriented cloud service request to the [10] service node

is Python in parallel computing system;

(2) for cloud service Python parallel computing, service

node in the system accepts the client's request after

calculating, will place the request on the task queue, and

the service node will calculate the node resources query

to a control node in order to complete the calculation of

sending request. The calculated node will receive the

request task;

(3) the main control node has two functions, first is a

dynamic monitoring of computing nodes, there is the

service nodes to provide the necessary query help,

computing nodes return state information to the service

node. There is a resource monitor in the control node,

which is responsible for collecting the status information

of the computing cluster. Return the calculated node

information from the client's request, and calculate the

corresponding Python computing service on the

corresponding computing node [13];

(4) the service node in the cluster receives the request

from the client, and the request is forwarded according

to the state information of the calculated node. The data

from the client in the system is analyzed and forwarded

to the computing node in the cluster. At the same time,

the service node receives the information from the

database of the control node, gets the processing power

A Parallel Computing Framework For Cloud Services 13

VOLUME 1, ISSUE 1, PP 9-16, MARCH 2019

of each computing node, and finally decides how to

distribute the computing task [14];

(5) after compute nodes receiving the request from the

client, Python computing service will use the

IronPython library to calculate, and and send to a

service node server after the results of the calculation is

converted;

(6) because parallel computing is a concurrent operation,

the service node will wait for the results of all

calculations, and then use the Web Service protocol to

transmit the data. Some of the client's Python library

program will be analyzed by the return value from the

server to add the results of the calculation to the runtime

environment [15-17].

4. ARCHITECTURE ESTIMATION AND

PERFORMANCE ANALYSIS

In this section, we will evaluate the system and test the

performance of the Python parallel computing

framework in this paper. The hardware and software

environment and the performance evaluation criteria of

the experiment are described in detail, and the

experimental results are analyzed in detail.

6

2

3

4

5

6

Client

Controller Node

Computing Node

Server Node

Internet or LAN

1

Fig. 7. Python Parallel Computing Flow Chart

4.1 Test environment configuration

In this paper, Python parallel computing system test

environment consists of 2 blade servers running on the

blade server KVM virtual machine, and service node

and control node are installed in a blade server, other

physical machine and virtual machine is used to

compute nodes. The test machine configuration is

shown in table 1.

4.2 Performance evaluation criteria

In this paper, the speedup ratio is used to measure the

performance of Python parallel computing system. The

speedup of this system will have a very intuitive

understanding of the efficiency of parallel computing. In

simple terms, the intuitive meaning of speedup is that

parallel computation is compared with serial computing,

which can be expressed in the following formula (1).

𝐸𝑛 =
𝑀1

𝑀𝑛
 (1)

Table 1. Configuration Information of Python Parallel

Computing System

Facilities
Configuration

Information
Number

Blade Server

OS：Debian 6.0.5

CPU: Intel(R) Xeon

E3-1240 v2

3.40GHz 4 Chanel

16 Cores；

Memory: 32GB ；
Disk: SATA 1T x

3；

Disk: SSD 512G x

1；

Gigabit Ethernet x

3；

Power module x 2；

3

Virtual

Machine

OS ：

WinServer2008

CPU：Dual-Core

Memory：1GB

Disk：100GB

5

Server

MySQL-Cluster

Database Cluster 1

Management Node

3 Data Nodes

3 Access Nodes

3

One n that is in use in the calculation of the number of

parallel CPU, M_1 said the cost of serial operation time,

M_n said the use of parallel operation will take time,

you can see that this ratio is large, so the efficiency will

be high efficient [13] platform.

However, according to the law of Amdahl, the number

of CPU used in parallel computing is not proportional to

the speedup of the system, and the Amdahl law can be

expressed in this way:

𝑆𝑛 =
𝑊𝑠+𝑊𝑛

𝑊𝑠+
𝑊𝑛
𝑛

 (2)

In the formula (2), W_n represents the operations that

are performed in parallel, and then the W_s represents

the sequential execution of operations in parallel

computing. Also, W_s can be used as an acceleration

ratio equal to 1 W_n. The above formula can be

translated into the following formula (3):

𝑆𝑝 =
𝑊𝑠+𝑊𝑛
𝑤𝑠
1
+
𝑊𝑝
𝑃

 (3)

Let

W = 𝑊𝑠 +𝑊𝑝 (4)

Where W represents the total amount of work, therefore,

𝑆𝑝 =
1

𝑊𝑠
𝑊
+
𝑊𝑝
𝑊×P

 (5)

Since parallel computing can be made into N parts, then,

𝑃𝑡 =
𝑊𝑡

𝑊
 (6)

P_t represents the proportion of the operation of the t

step in the whole algorithm operation, then the final

speedup is:

S =
1

∑ (
𝑃1
𝑃𝑡
)𝑛

𝑡=0

 (7)

14 Fang Ai

VOLUME 1, ISSUE 1, PP 9-16, MARCH 2019

The speedup is used for cloud services Python parallel

computing system, its effect is mainly manifested in the

calculation of the data request to launch, the serial

server, open the costs can not be parallel that part

largely determines the speedup of [18-20]. For this, the

results will be analyzed in part.

4.3 Speedup test and result analysis

The 4.2 section describes how to evaluate the parallel

computing efficiency, and the following is to introduce a

calculation subject to the test. We are very familiar with

the use of a sum of all the prime code, for its less than

for a certain number of two (using the tot_primes

function test n) and so_prime (n). Each time to give a

number of functions tot_primes (n) call, the results will

be stored in an array and transfer.

4.3.1The effect of execution time on the speedup ratio

When the input number is 100000, n=100000,

respectively, compared with Parallel Python in serial

parallel computing, parallel computing and a result, and

obtain and record these time to relative speedup in

comparison to get a conclusion. In Table 2, the first

column represents the number of parallel computing

requests, the second column represents using serial

mode to solve the time required for the third column is

to use the Parallel Python library to a parallel computing

time required, fourth column represents the speedup of

parallel computing ParallelPython library; fifth in the 16

nuclear cluster in the same way as the calculated results,

the sixth column for the corresponding speedup of.

Fig.8 shows the speedup of the parallel computation for

the two different system configurations: From Fig. 8 we

can easily get the following 3 conclusions:

Table 2. Test Results

Amoun

ts

4

Cores

16

Cores

Speedu

p

Cluste

r

Speedu

p

1 5.29 5.26 0.89 8.29 0.59

2 10.59 5.39 1.87 8.31 1.18

4 21.28 5.33 3.86 8.59 2.34

8 42.73 10.86 3.85 11.47 3.64

16 85.96 22.03 4.04 11.03 8.02

32 173.07 44.28 4.04 19.71 8.63

64 354.86 90.27 4.04 31.88 11.07

128 738.64
187.9

5
4.04 57.28 13.01

256
1584.6

3

406.5

8
4.04

114.7

3
13.87

Fig. 8. Parallel Speedup of Different System

Configurations

 (1) the parallel effect of Parallel Python is very obvious,

and through the comparison we also found a threshold,

where the effect of parallel computing at this time did

not reach is very obvious in the increase, but when more

than request threshold, the speedup is stable for

subjecting to local computer resources and for the

reason that there is no way to get nodes;

(2) the Web service oriented Python parallel computing

system, which is represented by a square line, has to

consider other costs, such as web and networks. When

the number of concurrent requests did not reach 8, the

speed is not as quick as the local computing speed, but

the back with the number of concurrent increase in

speedup is gradually improved, and finally accelerated

much higher than the local computation;

(3) with the concurrent requests becoming more and

more, data transmission and the cost to start Web

services become much smaller, this is the time to

increase, so the proportion of which is changed, the

proportion gradually reduced, under such circumstances,

the speedup becomes very perfect, we may reach the

memory of the theoretical value (16).

4.3.2. The influence of processing time of single

computing data on speedup

Table 3 is the same for the cloud computing services

Python parallel computing system cluster environment,

the n different values, respectively, the calculation of the

speedup is 10000, 200000 , 400000, 600000,

respectively.

Table 3. Comparison of Speedup of N with Different

Values

Amounts 10000 200000 400000 600000

1 0.19 0.39 0.59 0.79

2 0.18 0.79 1.24 1.71

4 0.27 1.64 2.51 3.32

8 0.29 3.21 3.69 6.33

16 0.82 4.49 8.01 10.21

32 1.59 6.78 8.81 10.21

64 2.09 9.11 11.21 12.41

128 3.31 10.19 12.87 13.79

256 3.42 11.77 13.87 14.80

A Parallel Computing Framework For Cloud Services 15

VOLUME 1, ISSUE 1, PP 9-16, MARCH 2019

Fig. 9. Relationship between the Number of Concurrent

Requests and Speedup

Fig. 9 shows the relationship between the number of

concurrent requests and the speedup. The following

conclusions can be drawn from Figure 8:

(1) When n is very small, do not use the cluster system

for parallel computing operations, because you will find

that in fact in other ways is the same effect, it is a waste

of resources. Even at the same time there are 256 such

parallel requests, the speedup is only 3.42, compared

with the theoretical value of 16 there is still a big gap.

According to the relevant law introduced above, this is

because the parallel computing part and the whole

operation time is very small, so that the proportion will

be very small;

(2) From the top of the figure and the table we can also

draw a conclusion of another, that if the number has

changed the calculation units, and is becoming larger,

the number of concurrent is in the same case, concurrent

computing unit gradually increases the amount of

calculation, the speedup will gradually improve.

To sum up, the number of concurrent clusters can also

influence the performance of the above table through

data analysis, and the final conclusion can be drawn that,

when the number of concurrent requests did not reach

the threshold, the time that cluster computing uses does

not change basically, and this conclusion is more

prominent in the case of n= 400000, this is because the

entire platform itself has 16 nuclear, and these nuclear

work is complicated, so that when the number of

requests did not reach the threshold, the real advantage

of the cluster can not be displayed.

5. CONCLUSION

In this paper, we propose a parallel computing

framework for cloud services, test and analyze the

whole system of Python. First, the preparation and

deployment of the hardware environment, then, network

environment, and finally the deployment of the entire

system software. Prior to the completion of the

construction of the environment, before the test, we also

introduced a standard for the experiment and analysis of

the acceleration ratio, through the elaboration of a good

understanding of the efficiency of parallel computing.

Finally, a specific example is designed to test the

performance of the system in detail.

6. ACKNOWLEDGEMENT

This work is partly supported by the following projects:

Teaching research project (2016jyxm1026), Suzhou

Regional Collaborative Innovation Center (2016szxt05)

and the Natural Science Fund of Anhui Province

(KJ2014ZD31).

7. REFERENCES

[1] M. Rodriguez and R. Buyya, “Deadline based

resource provisioning and scheduling algorithm for

scientific workflows on clouds,” IEEE

Transactions on Cloud Computing, vol. 2, no. 2, pp.

222–235, April 2014.

[2] L. Chi, J. Liu, and Q. Hu. Evaluation and Test for

Scalability of Numerical Parallel Computation，
Journal of Computer Research and Development,

vol.42, no.6, pp.1073-1078, 2005.

[3] D. Dang, Y. Liu, and X. Zhang et al., “A

Crowdsourcing Worker Quality Evaluation

Algorithm on MapReduce for Big Data

Applications,” IEEE Trans. Parallel Distrib. Syst.,

vol.27, no.7, pp.1879–1888, July 2016..

[4] J. Li, S.Chen, H. Ma. Research of Service-oriented

Architecture Reference Model and Its Application.

Computer Engineering，2006, 32(20): 100-102.

[5] T. Andrews, F. Curbera, H. Dholakia, et al.

Business process execution language for web

services. 2003:22-23.

[6] F. Curbera, R. Khalaf, N. Mukhi, et al. The next

step in web services. Communications of the ACM,

2003, 46(10): 29-34.

[7] C. Mohan, G. Alonso, R. Gunthor, et al. Exotica: A

research perspective on workflow management

systems. Data Engineering Bulletin, 1995, 18(1):

19-26.

[8] Z. Cai, X. Li, and J. N. D. Gupta, “Heuristics for

provisioning services to workflows in XaaS clouds,”

IEEE Transactions on Services Computing, vol. 9,

no. 2, pp. 250–263, 2016.

[9] I. Ang. Watching Dallas: Soap opera and the

melodramatic imagination. Psychology Press, 1985,

56-58.

[10] Y.Zhou. A Python-Calculation Grid Based on

Service-Oriented Parallel Computing. Shanghai

Jiaotong University，2008,12-67.

[11] S. Xue. The Comparison Research of Cloud

Computing and Grid Computing, 2010, 2-9.

[12] T. Fang. Research on grid application of parallel

computing. Guangdong University of Technology,

2006, 45-47.

[13] Y. Li. Design and implementation of parallel

computing platform based on MPI. Northeast

Normal University, 2007, 2-10.

[14] W. D. Liu. A distributed data flow model for

composing software services. Stanford University,

2003,12-14

[15] A. Fuggetta, G. P. Picco, G. Vigna. Understanding

code mobility. Software Engineering, IEEE

Transactions on, 1998, 24(5): 342-361

16 Fang Ai

VOLUME 1, ISSUE 1, PP 9-16, MARCH 2019

[16] F. Curbera, R. Khalaf, N. Mukhi, et al. The next

step in web services. Communications of the ACM,

2003, 46(10): 29-34.

[17] Y. Ye, S. Ying, and W. Li et al.. Research of SOA

and Its System Building. Computer application

research, 2005, 22(2): 32-34.

[18] R. Perrey, M. Lycett. Service-oriented architecture.

Applications and the Internet Workshops, 2003.

Proceedings. 2003 Symposium on. IEEE, 2003:

116-119.

[19] G. Li. Research on cloud computing platform

architecture based on Virtualization Technology.

Journal of Jilin Architectural and Civil Engineering

Institute, 2011, 28(1): 79-81.

[20] J. Wen. Establishment and performance analysis of

parallel computing platform. School of computer

science, Guangdong University of Technology,

2007, 34-45.

