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Abstract: Electric vehicles have strong spatiotemporal randomness during the charging process, which increases the
difficulty of power grid control and affects the quality of electric energy. This article proposes a deep learning based
spatiotemporal dynamic load prediction method for electric vehicles to address this challenge. A quantile regression
model based on air dynamic causal convolutional neural network is established to accurately predict the charging load.
This model uses neural network algorithms to enhance network learning ability, preprocesses data based on factors such
as changes in peak morning and evening passenger flow, holidays, and unexpected situations during the charging
process of electric vehicles, and improves prediction accuracy. And compared with the QRLSTM and QRNN models
through experiments, the experimental results show the scientificity of the model.
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1 INTRODUCTION

A smart grid is a system that synchronously transmits information and energy, and is an important means of achieving
power automation. According to the development trend of automobiles, electric vehicles are the mainstream of
development. With the large-scale integration of electric vehicles into the grid in the future, the load distribution it
brings has uncertain characteristics such as intermittency, volatility, and randomness in time and space [1], which will
change the power load curve [2] and have an undeniable impact on the operation, planning, and control of the entire
power grid [3]. Therefore, it is necessary for us to accurately predict the charging load of electric vehicles in advance, in
order to better guide the power system's power generation, distribution, scheduling and other work, and to eliminate and
protect harmonic pollution problems that pose a threat to the power grid [4-5]. Generally speaking, the establishment of
electric vehicle load forecasting models is relatively complex and is influenced by factors such as user usage habits,
transportation infrastructure conditions, equipment characteristics, the number of electric vehicles, and the distribution
of charging pile infrastructure. With the steady increase in the penetration rate of electric vehicles, more accurate load
forecasting of electric vehicles is needed. However, the prediction methods and model selection mentioned in the above
literature have many shortcomings, such as: the establishment of prediction models is relatively idealized, resulting in
poor universality; Without a large amount of charging data as support, its prediction parameters are difficult to
determine, and there is a significant deviation in the accuracy of the prediction. Therefore, it is necessary to study a new
algorithm model, which is a self-learning model that uses deep learning algorithm technology to fit its distribution on
the basis of data. The key technologies include optimizing the structure of deep learning models and researching
training algorithms for deep learning.

2 RESEARCH STATUS

At present, electric vehicle load forecasting can be mainly divided into two categories. One is to use mathematical
models to simulate the charging behavior of electric vehicles and obtain the predicted value of electric vehicle load. The
other is to use statistical learning models based on historical data for forecasting.

2.1 A Monte Carlo based Mathematical Model for Load Prediction of Charging Stations
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The Monte Carlo method is a method based on the theory of probability and statistics, which treats the problem to be
solved as a probability of a random event. After determining the probability model of the problem, a computer is used to
take a random number from the probability model to obtain an approximate solution to the problem. The data mainly
refers to some basic parameters obtained from studying the influencing factors of charging for various purposes of
electric vehicles, including vehicle types (taxis, buses, private cars), distribution of starting charging capacity and
starting time during charging periods, etc. Firstly, these data types are classified and processed to determine the
probability model of vehicle owners' traffic habits, including charging habits and formal habits, Establish a
mathematical model with random probability characteristics. Then, Monte Carlo principles are used to predict the
charging location/time and load demand of the car in the future period. Reference [6] proposes a method for predicting
the charging load of electric vehicles based on the travel chain of electric vehicles and considering the charging
frequency. Based on the survey and statistical data of household vehicle travel, the purpose of household vehicle travel
is divided into five categories. Simple and complex travel chains are constructed, and factors such as temperature,
traffic conditions, and holidays are comprehensively considered. The distribution of electric vehicle travel is classified
and modeled, and the results of electric vehicle load prediction are obtained.
These methods all use mathematical formulas to simulate charging behavior for charging station load prediction.
Reference [7] considers establishing a dynamic fluid dynamics model based on transportation to predict the charging
load of charging stations in the context of fast charging stations at high-speed exits. The experiment shows that the
model can effectively predict the dynamic charging demand of fast charging stations on highways in terms of space and
time. Reference [8] used the BCMP queuing network model to predict the charging demand of plug-in electric vehicles,
and the model was validated with traffic flow data from New York, achieving good prediction results. Reference [9]
proposes a method based on Monte Carlo method to predict charging load, using Monte Carlo to randomly simulate the
selected starting state of charging, charging method, starting point of charging battery, etc. Then calculate the actual
charging time to obtain the charging load. Finally, it is predicted that electric vehicles in China will have a significant
impact on the power grid by 2030. Based on a large amount of data, reference [10] establishes a model for the behavior
habits of electric vehicles, including driving trajectories, charging habits, etc., and calculates the total load of electric
vehicles based on the road network structure ball. Reference [11] proposes an electric vehicle load forecasting method
based on energy equivalence, which converts the fuel sales of gas stations into electric vehicle charging loads through
the energy equivalence method, taking into account two modes of charging facilities: decentralized and centralized.
Finally, obtain the maximum load for both modes.

2.2 Statistical Learning Method for Charging Station Load Prediction Based on Historical Data Background

The traditional load forecasting methods for electric vehicle charging based on power load forecasting include
regression analysis, similar day method, etc; Modern prediction methods include wavelet analysis based prediction,
neural network-based prediction, and Support Vector Machine (SVM) prediction. SVR [12-14] (Support Vector
Regression), Grey Model, and Wavelet Neural Network [15], etc. The Monte Carlo model method is a method based on
probability and statistics. Reference [16] used a Monte Carlo model to simulate the charging process of electric vehicles
and derived a mathematical relationship for the optimal usage conditions. The SVR model based on GA-PSO adopted
in reference [17] has a good effect on the charging load of electric vehicles. However, the kernel function in SVR
cannot be applicable to all situations, and selecting the appropriate kernel function requires some experience. Reference
[18] used three models, namely grayscale model, RBF (radial basis function) neural network, and BP neural network, to
predict the charging load of electric vehicles, and compared the prediction results. The grey model is widely used in
power load prediction, and the GM (1, 1) prediction model is the most commonly used grey model based on first-order
differential equations. This model requires a small amount of data and is easy to calculate, but it is difficult to achieve
the desired prediction results for more complex data. The short-term prediction performance of RBF neural network and
BP neural network models for electric vehicle charging load is similar. For medium - and long-term predictions, RBF
neural networks are generally more accurate. Reference [19] proposes a big data based method for predicting the
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charging load of electric vehicles. Using big data technology to introduce electric vehicle charging demand prediction
models and real-world traffic distribution data and weather data. Specifically, the prediction model is based on big data
technology that integrates collection, storage, and management, where the data is based on historical traffic distribution
data and weather data from South Korea. Analyze through the following steps: (1) Cluster historical traffic allocation
data with high similarity into clusters using clustering analysis; (2) Identify the impact of weather data on traffic
patterns using correlation analysis; (3) Develop classification criteria for the relationship between traffic clusters and
weather influencing factors using decision trees. Finally, use this classification standard to establish a predictive model
for predicting the charging load of electric vehicles. Reference [20] mentions a short-term charging station load
prediction model based on time series distance measurement method, which predicts the charging load based on the
distance measurement between the load series and time series.
The past statistical learning methods for predicting the charging load of electric vehicles only considered the time
dimension. However, the charging load of electric vehicles also includes complex spatiality. Only by comprehensively
considering the dual dynamic changes of load time and space can better spatiotemporal dynamic prediction be made.
Therefore, it is necessary to study and establish a deep learning model for high-precision prediction of spatiotemporal
dynamic loads of electric vehicles based on historical data.

3 DESIGN OF DEEP LEARNING MODELS

3.1 Selection of Factors Affecting the Operation Status Of Charging Stations

With the rapid development of the electric vehicle industry, the impact of charging loads during the charging process on
the power grid will become increasingly significant. The factors that affect the charging and discharging status of
charging piles have complex characteristics, such as regional development differences, population density differences,
differences in the number of electric vehicles owned, user schedules and charging and discharging habits, holidays, etc.
Therefore, this article selects characteristic variables from three aspects to characterize the influencing factors of the
operating status of charging stations: a) Power parameters of charging stations, which are the most intuitive parameters
for expressing the network, obtained through information perception; b) Spatial factors require quantitative
transformation of qualitative descriptions and merging them into the input feature vectors of the model; c) The time
factor highlights factors such as changes in peak morning and evening flow, holidays, and unexpected situations. Due to
different feature data and different dimensions, it is necessary to preprocess the data based on empirical knowledge,
mainly including correlation analysis, data noise cleaning, and input data normalization.

3.2 Model Design

The concept of deep learning originated from the study of artificial neural networks. The model structure is an LSTM
(Long Short Term Memory) neural network proposed by Hochreiter and Schmidhuber in 1997, which can effectively
solve the problem of long-term dependencies in sequences. Its main structure is shown in Figure 1, and LSTM can be
represented as a chain structure by time expansion. There are four neural network layers in the repeating module of
LSTM.

Figure 1 LSTM Structure

Figure 1 is called a cell, and LSTM has four gates. The first layer of neurons is the sigmoid control layer of the forget
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gate, as shown in Equation (1).

1( [ , ] )t f t t ff W h x b   
(1)

The second and third layers are input gates and tanh layers, respectively, as shown in equations (2) and (3). The sigmoid
layer of the input gate determines which information to update; The tanh layer creates a new candidate value that may
be added to the cellular state.

i 1 i( [ , ] )t t ti W h x b   (2)
~

C 1 Ctanh( [ , ] )t t tC W h x b  (3)
Update the old state of the cell to, as shown in equation (4).

~

1* * tt t t tC f C i C  (4)
Finally, by using an output gate containing a sigmoid layer as shown in equation (5), equation (4) is passed through a
tanh layer (such that the output value is between -1 and 1), and then multiplied with the output gate, the forgetting and
memory parameters are substituted to the final output.

o 1 o( [ , ] )t t tO W h x b   (5)
tanh( )t t th O C (6)

Among them,
fW and

fb Representing forget gate weights and biases;
iW and

ib Represents the weight and bias of

the input gate; cW and cb Represents the weight and bias of updated values;
oW and

ob Indicates the weight and
bias of the output gate; ( ) g Representing the sigmoid activation function, tanh( )g Represents the hyperbolic tangent
activation function.  Representing matrix multiplication; 1[ , ]t th x Merge columns representing matrices or vectors with

equal rows; * Representative point multiplication.
Faced with massive charging data, data mining techniques are used for classification, organization, and data partitioning.
A learning model is designed to automatically discover common features from unlabeled monitoring data to describe
the samples. Then, a labeled dataset is trained by manually labeling only a small number of samples (load state
determination output) as input to the prediction classifier, ultimately forming a model that can be used for actual
prediction. Combining quantile regression with deep learning, a deep learning quantile regression probability density
prediction method is proposed, which is the Quantile Regression Dilated Causal Convolution (QRDCC) neural network
quantile regression model. The model framework is shown in Figure 2.

Figure 2 QRDCC program flowchart
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4 EXPERIMENTAL SIMULATION AND CONCLUSION

Experimental environment:
CPU: Core i7-7700, Memory: 16GB, GPU: 1080Ti 11GB,
Experimental data: Charging load data of charging piles inside Huazi Charging Station in Changsha City (30 days),
Experimental platform: Keras
The experiment was tested from two aspects. Firstly, the channel for QRDCC charging load prediction under a certain
range of built-in reliability was compared, with confidence values of 85% and 80%, respectively. The accuracy of
QRDCC regression prediction mode was better than that of QRLSTM and QRNN modes. The prediction results of
QRDCC mode were basically consistent with the original data, and the verification results are shown in Figure 3.
Secondly, the first test was conducted to predict the probability density of the time point. The QRDCC model test
results were generally consistent with the true values, while the QRLSTM test results were significantly higher than the
test data values. The experimental results are shown in Figure 4.

a) Comparison of QRDCC charging load
prediction intervals at 85% confidence level

b) Comparison of QRDCC charging load
prediction intervals at 80% confidence level

Figure 3 Probability prediction results of electric vehicle load

Figure 4 Probability density map of charging load prediction at the first time point

Based on the experimental analysis in Figures 3 and 4, it is evident that the model proposed in this paper outperforms
traditional power load prediction models. This is because this model uses non parametric kernel density charging load
interval probability prediction models - the air causal convolutional neural network quantile regression model and the
LSTM neural network quantile regression model - to estimate the parameters of the air causal convolutional neural
network under different quantile conditions, Then, the predicted values under different quantiles are obtained, and the
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KDE method is used to predict the probability interval of charging load, which can effectively predict the fluctuation
range of charging load within a certain range. According to the structure of the spatiotemporal causal convolutional
neural network, it is known that it can learn long-term historical patterns well without significantly increasing
parameters. Estimating the charging load prediction interval using Gaussian distribution kernel function resulted in
better reliability and sensitivity compared to QRLSTM and QRNN.
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