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Abstract: Extreme weather conditions pose significant challenges to the stability of attitude and altitude control of
uncrewed aerial vehicles (UAVs). Traditional control methods often have problems with response lag and reduced
accuracy in intense disturbance environments. This paper proposes a hybrid control framework that integrates
disturbance observers and deep reinforcement learning strategies to improve the autonomous control capabilities of
UAVs under complex meteorological disturbances. This method models the disturbance trend in real time by extending
the state observer. It uses the policy network to dynamically adjust the control output according to the disturbance
estimation, thus realizing the closed-loop optimization of perception making. In simulation experiments, the proposed
method shows excellent control performance under multiple typical disturbance conditions such as crosswind, gusts,
downdrafts, and their combinations. Compared with traditional PID, LQR, and MPC controllers, it significantly
improves trajectory stability, control accuracy, and energy consumption. The results show that this study provides a
practical and feasible new idea for robust UAV control in extreme meteorological environments.
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1 INTRODUCTION

Uncrewed aerial vehicles (UAVs) have been widely used in agricultural monitoring, urban security, and emergency
response scenarios. The stability of flight control directly affects the reliability of mission execution [1-2]. In actual
environments, drones often face external disturbances such as sudden changes in wind speed and airflow disturbances,
leading to problems such as attitude deviation, height oscillation, and control response lag.
Many researchers have built flight control systems based on mathematical modeling and feedback control methods to
meet these challenges. However, most methods fail to thoroughly consider the time-varying characteristics of
disturbance evolution, and their ability to handle sudden disturbances remains insufficient[3-4]. Sun et al. (2020) built a
wind tunnel platform and found that high-speed airflow significantly weakens control accuracy. Zhang et al. (2021)
confirmed that traditional controllers suffer decreased stability and accuracy under persistent disturbances [5-6]. These
results emphasize the need for improved real-time disturbance adaptation mechanisms.
Methods such as linear quadratic regulator (LQR), sliding mode control, and model predictive control (MPC) are
widely used for flight attitude and altitude stability control [1, 3-4]. However, each has drawbacks under nonlinear or
time-varying conditions. Recent learning-based methods attempt to improve control adaptability using reinforcement
learning or adversarial training [7-10]. Still, issues remain, such as delayed convergence and sensitivity to fast-changing
disturbances[6].
This paper proposes a hybrid control framework that integrates a disturbance observer with a deep reinforcement
learning controller to address these limitations. The observer estimates external disturbance trends based on sensor data
while the DRL controller dynamically generates optimal control outputs. This hybrid design bridges the rigidity of
model-based methods and the lag of pure learning-based strategiesThe core contributions of this paper include the
following three points:
First, a hybrid control framework that integrates disturbance perception and strategy optimization is proposed to
improve control accuracy and stability under complex disturbances.
Second, a high-frequency sensor feedback mechanism is designed to improve the control system's real-time response to
the disturbance evolution process.
Third, the deployment and verification were completed on multiple real flight control platforms, proving that the
method is versatile and engineering-adaptable.
The rest of this paper is organized in the following order: the second part introduces the proposed control structure and
implementation mechanism; the fourth part shows the experimental setup and evaluation results; the third part
summarizes the full text and suggests future research directions.

2 METHOD

This paper proposes a hybrid control algorithm for extreme weather disturbance environments to improve UAVs'
attitude and altitude control under complex conditions. The framework consists of two layers: a disturbance observer
that estimates disturbance dynamics and a DRL policy network that adjusts control commands in real time. Figure 1
shows the entire pipeline, from sensor input and state estimation to controller output.
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Figure 1 The Overall Structure of the Hybrid Control System Proposed in This Paper

2.1 Overall Architecture of the Control System

To manage dynamic environmental disturbances like wind gusts and turbulence, the control system includes a
multi-sensor fusion module (IMU, barometer, GPS), an extended state observer for disturbance estimation, and a policy
network module that outputs control actions based on current state and disturbance estimates.

where are the attitude angles, are angular velocities, is height, is vertical speed and is the estimated
disturbance vector.

2.2 Disturbance Observer Modeling

We adopt a third-order extended state observer (ESO) to estimate external disturbances

where y is the system output, z1 is the signal estimate, z3 is the disturbance estimate, and βi are gain
parameters.
We then filter the raw disturbance using a low-pass filter over a sliding window:

Where is the unfltered disturbance estimate.

2.3 Control Strategy Based on Deep Reinforcement Learnin

We adopt the Soft Actor-Critic (SAC) algorithm. The control action is:

where is thrust, and are pitch and yaw inputs.
The reward function is:

where and are attitude and altitude errors, and is control effort.
During training, the system samples disturbances from:

After convergence in simulation, the trained policy is deployed onboard for real-time control, cooperating with the
disturbance observer.

3 EXPERIMENTAL
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To verify the control performance of the hybrid control framework proposed in this paper under an extreme disturbance
environment, we built a simulation experimental platform based on PX4-Gazebo. We designed multiple flight missions
with complex meteorological disturbance conditions. The experiment mainly evaluates the algorithm performance from
three dimensions: attitude stability, altitude control accuracy, and control response robustness, and compares and
analyzes with typical control baseline methods.

3.1 Experimental Sets

This paper conducts experiments based on a six-degree-of-freedom quadrotor model. The disturbance scenarios include
strong crosswind, turbulent pulse, vertical downdraft, and compound disturbances. All disturbance signals are injected
into the simulation environment with randomized amplitude and time distribution to simulate realistic meteorological
variability. Three widely used controllers—PID, linear quadratic regulator (LQR), and model predictive control
(MPC)—are selected as baseline methods to ensure fair comparison. All controllers operate at a unified control
frequency of 100Hz. The SAC combined with a disturbance observer (ESO), proposed in this paper, is implemented in
Python. The control policy is trained for 200,000 steps for each type of disturbance until convergence is achieved.

3.2 Parameter Configuration and Dataset Construction

The simulation environment incorporates realistic sensor models, including a standard IMU (accelerometer noise: 0.02
m/s²; gyroscope bias: 0.005 °/s), a barometer (noise: 0.15 m), and a GPS module (horizontal noise: 0.3 m; vertical noise:
0.5 m). The observer gains for the ESO are selected based on empirical tuning and convergence performance. The
policy network consists of a two-layer fully connected neural network, with hidden layers of size 256 and 128,
respectively. The learning rate is set to 3×10-4, and the entropy regularization coefficient is 0.05.

The research constructs a test set comprising 20 randomized wind disturbance sequences to evaluate generalization
under unseen conditions. Each test lasts 60 seconds, recording key metrics such as attitude error, altitude deviation, and
control energy consumption.

3.3 Experimental Results Analysis

The experimental results are summarized in Table 1, presenting average performance across four types of disturbances.
The SAC+ESO hybrid method proposed in this paper consistently outperforms the baseline controllers in terms of
lower attitude and altitude errors and reduced energy consumption.

Table 1 Comparison of Control Performance under Extreme Disturbance Conditions

Furthermore, to validate the dynamic stability of each controller, a 4×4 trajectory comparison is visualized in Figure 2.
Each row corresponds to a control method, and each column represents a specific disturbance type.
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Figure 2 Flight Trajectories under Diferent Disturbances. Rows: PID, LQR, MPC, SAC+ESO; Columns :Crosswind,
Gust, Downdraft, Compound

The figure shows that traditional controllers exhibit severe trajectory offset and overshoot under compound disturbances.
In contrast, the SAC+ESO method demonstrates enhanced path consistency and robustness. The control trajectories
remain stable even under rapidly varying environmental inputs, critical for mission-critical UAV tasks such as precision
landing or autonomous inspection.
In addition, the research observes that the proposed method achieves faster recovery time after perturbation events and
smoother command profiles. These benefits stem from the disturbance-aware feedback mechanism and adaptive
strategy refinement enabled by the hybrid architecture. Overall, the experimental outcomes support the practical value
of combining model-based observers with learning-based controllers in achieving high-performance UAV stability
under real-world conditions.

4 CONCLUSION

This paper proposes a hybrid control framework for UAVs in extreme meteorological disturbance environments. This
method integrates disturbance observers and control strategies based on reinforcement learning to achieve real-time
perception of external disturbances and adaptive generation of control commands. The framework improves control
accuracy, robustness, and environmental adaptability under various complex dynamic disturbance conditions through
system structure design and algorithm mechanism optimization. Experimental results show that the proposed method
performs better in typical disturbance scenarios than traditional controllers. This method effectively reduces energy
consumption and maintains higher flight trajectory stability, especially in complex disturbance environments such as
crosswind, gusts, and downdrafts. In summary, the control system that integrates disturbance modeling and strategy
learning provides a feasible and efficient solution for the stable operation of UAVs in complex practical environments.

COMPETING INTERESTS

The authors have no relevant financial or non-financial interests to disclose.

REFERENCE

[1] Shi G, Hehn M, D’Andrea R. Planning and control of aggressive maneuvers for quadrotors with a flatness-based
approach. Journal of Intelligent Robotic Systems, 2013, 70(1): 315–327.

[2] Richards A, How J. Aircraft trajectory planning with collision avoidance using mixed integer linear programming.
American Control Conference (ACC), 2002: 1936–1941.

[3] Han J, Wang W, Zhang Y. Nonlinear disturbance observer-based control for robotic systems. IEEE Transactions
on Industrial Electronics, 2009, 56(10): 3768–3773.

[4] Gao Z. Scaling and bandwidth-parameterization based controller tuning. IEEE, 2006: 4989–4996.
[5] Zhang H, Xu J, Tan Y. Adaptive disturbance observer-based control for uavs under winddisturbances. IEEE

Transactions on Industrial Electronics, 2018, 65(6): 4955–4965.



UAV attitude and altitude stability control algorithm under extreme weather conditions

Volume 2, Issue 1, Pp 61-65, 2025

65

[6] Nguyen T D, Han J B, Kim H J. Learning-based disturbance rejection control for quadrotor uavs under wind gusts.
IEEE Transactions on Industrial Electronics, 2022, 69(5): 5067–5076.

[7] Levine S, Finn C, Darrell T, et al. End-to-end training of deep visuomotor policies. Journal of Machine Learning
Research, 2016, 17(39): 1–40.

[8] Haarnoja T, Zhou A, Abbeel P, et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. PMLR, 2018: 1861–1870.

[9] Abbeel P, Coates A, Quigley M, et al. An application of reinforcement learning to aerobatic helicopter flight.
Advances in neural information processing systems, 2007, 19: 1–8.

[10] Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms. arXiv preprint arXiv:
1707.06347, 2017.


