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Abstract: This paper investigates a cognitive collaboration-based decision-making framework for manned/unmanned
systems, aiming to address the limitations of traditional methods in situation assessment, task allocation, and path
planning. Firstly, a dual layer coupled situation and threat assessment model is constructed using Dynamic Intuitionistic
Fuzzy Cognitive Maps (DIFCM) and Genetic Algorithms (GA), achieving collaborative optimization of global situation
inference and local threat quantification. Secondly, an adaptive task allocation mechanism is designed by integrating an
improved Contract Net Protocol with UAV intelligent emotional modes, effectively balancing task execution efficiency
and resource utilization. Finally, an emotion-driven improved A* algorithm is introduced, enhancing the adaptability
and safety of path planning in dynamic threat environments through dynamic threat avoidance radii and cognitive load
feedback mechanisms. Simulation experiments demonstrate that the proposed algorithm improves replanning response
time by 23% compared to traditional path planning algorithms under sudden threats, while reducing path threat costs by
58%. The research outcomes provide new theoretical exploration and practical references for manned/unmanned
collaborative tasking and decision-making in intelligent mission scenario, aiming to advance the theoretical and
practical development of deep human-machine intelligence integration.
Keywords:Manned/Unmanned collaborative combat; DIFCM; Manned aircraft cognitive load; Improved A* algorithm;
UAV intelligent emotional mode; Genetic algorithm

1 INTRODUCTION

Future strategic scenarios are becoming increasingly intricate, making independent operations by either humans or
machines insufficient. Effective collaboration between humans and unmanned systems, combining human judgment
with robotic accuracy, is key to advanced intelligent strategies. Programs like "Loyal Wingman" and Su-57–"Okhotnik"
validate its effectiveness [1]. This highlights the need for a full-process framework covering "situational awareness →
threat assessment → mission decision → path planning." Key challenges include task allocation, interaction
mechanisms, and performance evaluation, while current research overlooks UAV attributes, environmental factors, and
cross-level cognitive interaction. Seamlessly integrating human cognition with machine autonomy remains crucial for
enhancing collaborative work effectiveness.
Research on core technical systems for collaborative decision-making includes several key studies. Fu reviews U.S.
programs like the Software-Enabled Control Plan and the Common Architecture for Manned-Unmanned Systems [2],
which facilitate mission planning, decision-making, and standardized communication between manned aircraft and
UAVs. In contrast, domestic research remains largely theoretical. Wu models collaborative air strategic scenarios as a
partially observable Markov decision process (POMDP), employing distributed training to address environmental non-
stationarity and centralized training to mitigate computational challenges [3], suitable for heterogeneous multi-aircraft
formations. Xie introduces a direction-finding cross-target localization model, proposing variable-curvature Dubins
curves for low-speed maneuvering targets and an optimal control model with penalty function-based trajectory planning
for high-speed targets [4], achieving localization accuracy improvements of 36.9% and 23.5% in two scenarios. In
collaborative task decision-making, Zhong presents a hybrid fuzzy cognitive map (HFCM) decision method [5],
establishing an interactive decision framework with intervention strategies derived from RBFCM and IFCM. Xue builds
a decision requirement reasoning model using fuzzy grey cognitive maps (FGCM) and particle swarm optimization
(PSO) to refine weight learning [6], enabling rapid task selection. Liu proposes an ACO-A* hybrid path planning
algorithm with a dynamic grid environment and k-means clustering for improved UAV collaborate maneuver decision-
making [7]. Lastly, Gu outlines international advancements in manned/unmanned teaming [1], proposing integration
architectures and future research directions in collaborative control.
Existing research often focuses on isolated decision-making aspects, lacking a comprehensive framework integrating
"situational awareness → threat assessment → task allocation." This study optimizes decision-making through
cognitive collaboration, advancing human-machine integration [8]. By combining dynamic intuitionistic fuzzy cognitive
maps, genetic algorithms, and emotional adaptive mechanisms, it constructs a full-process model while incorporating a
cognitive load quantification module. A data-knowledge dual-driven approach refines weight learning, and an
emotional state transition matrix enables UAVs to adapt autonomously. Unlike prior work, this framework couples
human cognition with machine autonomy, validated through simulation. It enhances adaptability via bidirectional
human-machine interaction and improves coherence across decision-making stages, addressing challenges like
fragmented decision logic and response delays.
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2 COLLABORATIVE DECISIONING MODEL

2.1 Collaborative Decision-Making Mechanism

The core of the manned/unmanned collaborative system is a "human cognition-led, machine intelligence-enhanced"
decision-making framework. By integrating manned aircraft control with UAV autonomy, complementary collaborative
effectiveness is achieved. The heterogeneous nature of these systems provides significant advantages but also
introduces challenges: manned aircraft, with greater payload and tactical flexibility, can perform critical tasks, but their
survival requirements and performance differences complicate decision-making. The dynamic authority allocation
mechanism optimizes decision-making and task execution by assessing operator workload and task attributes in real
time. Figure 1 illustrates a typical scenario: the manned aircraft, as mission commander, sets objectives and strategies,
while the UAV performs reconnaissance and tasking based on real-time data, feeding task status back. Dynamic
authority allocation and closed-loop control enable efficient task handling in complex environments [9].

Figure 1 Task Scenario of Manned/Unmanned Collaborative Decision-Making

2.2 Situation and Threat Assessment Model

The modeling of task situation and threat assessment is the core cognitive layer of the human-machine collaborative
decision-making system. Its essence lies in constructing a hybrid reasoning framework that integrates human
experiential knowledge with machine computational capabilities. Based on intuitionistic fuzzy cognitive map theory,
this paper proposes a dual-layer coupled assessment architecture: the first layer employs Dynamic Intuitionistic Fuzzy
Cognitive Maps (DIFCM) to achieve global situation evolution inference, while the second layer utilizes a Genetic
Algorithm-enhanced Threat Assessment Network (GATAN) to precisely quantify local threats. The two layers form a
synergistic enhancement effect through shared key state variables and weight adjustment mechanisms, reducing model
complexity while improving adaptability to dynamic mission scenarios.

2.2.1 DIFCM

As a key tool for complex system modeling, cognitive map theory has been widely applied in social network analysis
and economic system simulation since Axelrod’s foundational work [10]. However, traditional cognitive maps face two
major limitations when addressing high-dimensional uncertainties in modern systems like highly dynamic mission
perception networks: (1) reliance on binary causal reasoning based on Boolean logic [11], which restricts the
representation of fuzzy relationships, and (2) the absence of dynamic topology optimization, leading to rigid knowledge
structures. To overcome these challenges, Iván S introduced Fuzzy Cognitive Maps (FCMs) [12], achieving three
breakthroughs: (Ⅰ) integrating fuzzy membership functions for continuous-value causal reasoning, (Ⅱ) developing
concept node activation models using nonlinear transfer functions, and (Ⅲ) optimizing weight matrices to enable
dynamic topology evolution. Mathematically, FCMs can be modeled as weighted directed graphs ( , , )FCM G E W ,
where the concept node set 1{ }ni iC C  represents key system elements (e.g., threat levels), and the directed edge set
E C C  describes causal influence paths between nodes. In the weight matrix:
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( 1,2,..., )ijw j n indicates the degree and direction of the influence of concept node iC on
jC with [ 1,1]ijw   . When

there is no causal relationship between iC and jC , or when i j , 0ijw  holds. By introducing intuitionistic fuzziness
to node information and adjacency weight matrices and replacing the weighted summation and threshold functions in
traditional FCM models with intuitionistic fuzzy ordered weighted averaging (IFOWA) operators, the Intuitionistic
Fuzzy Cognitive Map (IFCM) model ( , , )i eIFOWA C w OWA is obtained. The values of node state information and inter-
node association information lie within [0,1] . Defining the relevant weight vector of the IFOWA operator as

1 2( , ,..., )Tne e e e , where [0,1], 1,2,...,je j n  , the IFCM reasoning process is as follows. Let the influence of node

( 1,2,..., )iC i n on node
jC through directed arcs at time t be:

When i j ,

( ) ( ) ( ) ( ) ( ) ( )( ) , ( ) ( ) , ,
ij ij i i ij ijij r t r t i ij C t C t w t w tr t C t w t            
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When i j , ( ) ( )ij jr t C t , and the value of node ( )jC t at time 1t is
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In engineering implementation, IFCM functions as a state propagation system based on fuzzy logic, following the steps
of initializing concept node states, iteratively updating via weighted causal networks, and stabilizing outputs. Initially,
environmental states (e.g., threat levels, resource distribution) are loaded, and states are propagated using intuitionistic
fuzzy operators until fluctuations fall within a predefined threshold, leading to stable decision outputs. Unlike
traditional cognitive maps, which offer static conclusions, the DIFCM model incorporates time-series variables and
inter-node associations, enhancing real-time adaptability and memory.

2.2.2 Genetic Algorithm

Evolutionary algorithms, inspired by biological evolution, are population-based optimization methods that efficiently
address complex scenario decision-making by simulating natural selection and genetic variation. Their core mechanism
involves dynamically evolving populations within the solution space, iteratively refining solutions through selection,
recombination, and mutation as shown in Figure 2.

Figure 2 Evolutionary Learning Algorithm

Current mainstream branches of evolutionary algorithms include Genetic Algorithms (GA), Ant Colony Optimization
(ACO), Asexual Reproduction Optimization (ARO), and the Jaya algorithm. Each variant exhibits differentiated
characteristics in the task of Fuzzy Cognitive Map (FCM) weight learning as shown in Table 1:
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Table 1 Property of Evolution Algorithms
Algorithm Core Operation FCM Features Limitations

GA Selection/Crossover/Mutation Strong global search
capability

Convergence speed sensitive to parameters

Ant Colony Optimization Pheromone deposition/Path
selection

Distributed collaborative
optimization

High memory usage

Asexual Reproduction
Optimization

Cloning/Gene fragment
recombination

High local search
efficiency

Prone to premature convergence

Jaya Algorithm Favorable-avoidance strategy No need to adjust control
parameters

Significant performance degradation in high
-dimensional problems

Genetic algorithms, with their robust operator system and global convergence, are ideal for FCM weight matrix learning.
Their evaluation includes: 1) encoding scenario element correlations through chromosomes; 2) customizing fitness
functions for tasking effectiveness; and 3) utilizing parallel computing for timely joint decision-making. This study uses
an adaptive genetic algorithm, with pseudocode in Algorithm 1.

Algorithm 1 Genetic Algorithm
Algorithm 1 Genetic Algorithm
1: Initialize population (0) (0)

0 1{ , }Ni j iP w w 
2: repeat
3: repeat
4: iw ←Arithmetic Crossover: ' (1 )i i iw w w    ，where (0,1)U 
5: jw ←Multi-Point Crossover: ' ( , , )j j iw w w k  ， k is random cut point

6: '
iw ←Gaussian Mutation: 2'' ' (0, )i iw w  

7: '
jw ← Polynomial Mutation: '' ' ( )j jw w q  ，q is mutation intensity

8: Compute Fitness ''( ) 1/ (1 )i ijf w d 
9: until generate offspring population

tQ satisfy
tQ N

10: Select parents 1 argmax { ( )}
t tt w P QP f w  

11: until max ( )f w  or maxt T

As shown in Figure 3, the construction of DIFCM is based on six core situational elements ( ( , 1,2,...,6)iC i  ) and three
environmental control variables. The causal relationships between nodes are characterized by an interval intuitionistic
fuzzy weight matrix

6 6[ ]ijW w  , where each weight [ , ],[ , ]L U L U
ij ij ij ij ijw      is determined by expert groups using an

improved Delphi method [13].

Figure 3 Conceptual Nodes of the Situation and Threat Assessment Model

The threat assessment network focuses on eight-dimensional elements, and its weight matrix construction abandons
traditional expert weighting methods in favor of data-driven optimization using an improved genetic algorithm. The
chromosome encoding scheme is designed as follows: for 11 sets of weight parameters, the membership degree ij and
non-membership degree

ij are concatenated to form a 22-dimensional real-valued vector:

18 18 21 21 28 28 78 78 87 87[ , , , , , ,... , , , ]chromosome           . (4)
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The population size is set as 55P  to ensure search space coverage. The fitness function is defined as:

8 81
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11 ( ) ( )T sim ref
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N t N t

T 


 

, (5)

where
8N represents the threat level synthesis node, and its reference value 8

refN is calibrated based on expert
evaluation results from historical missions. The genetic operations adopt a hierarchical strategy:

(1) Selection Phase: Roulette wheel selection is used, where the probability of each chromosome being selected is
proportional to its fitness:

1

i
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




. (6)

(2) Crossover Phase: Directed arithmetic crossover is performed on selected parent individuals, with new weights
calculated as:

' ( ) ( )(1 ) , ~ (0.2,0.8)p q
ij ij ij U       . (7)

(3) Mutation Phase: Cauchy-Gaussian hybrid mutation is applied to 10% of the individuals:
'' ' ( (0,1)) (1 ) (0,1))ij ij C         . (8)

Here,  controls the mutation intensity distribution and  is the step size coefficient. The algorithm termination
conditions are set as either a fitness improvement of less than 0.1% for 100 consecutive generations or reaching the
upper limit of 300 iterations.

Table 2 Part of conceptual nodes of the model
Conceptual Nodes Implication

1C Destructive Capability of Opposing Equipment Systems

2C Cognitive Load of Manned Aircraft Operators

3C UAV Equipment Systems

4C Manned and Unmanned Rear Support Systems

5C Manned and Unmanned Information Systems

6C Advantage/Disadvantage Level of Our Situation Status

*
1V Atmospheric Density

*
2V Opposing Support

*
3V Manned Aircraft Operator Intervention

Note: * is environmental control variable.

As shown in Table 2, manned aircraft operators influence the assessment process through two interfaces: Environmental
Control Variable Adjustment, where weather changes affect value ranges and atmospheric density compensation, and
DIFCM, which generates situational index vectors that integrate cognitive load in threat assessment. The cognitive
foundation module uses interval intuitionistic fuzzy numbers to represent expert knowledge and scenario uncertainty.
The hybrid learning framework combines genetic optimization and rule-based reasoning, reducing subjective reliance
while ensuring interpretability. A bidirectional mapping mechanism guides human cognition to correct UAV
assessment deviations.

2.3 Task Allocation and Path Planning Model

In manned/unmanned collaborative tasking systems, task allocation and path planning are key decision-making
elements that ensure operational effectiveness. Balancing task efficiency, resource use, and adaptability, this paper
presents a cognitive intelligence-based framework using an improved Contract Net Protocol (CNP) and adaptive A*
algorithm for efficient resource scheduling and safe path generation in dynamic mission environments.

2.3.1 Contract Net Protocol

The task allocation problem is a multi-constraint, multi-objective optimization challenge, complicated by scenario
uncertainties and the collaboration of heterogeneous platforms as shown in Figure 4:
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Figure 4 Flowchart of the Enhanced Contract Net Protocol Algorithm

Traditional CNP simulates market bidding but neglects human cognitive load and UAV autonomy. To overcome this,
the cognitive intelligence-based collaborative decision-making model includes the cognitive state of manned aircraft
operators in task allocation. The task allocation matrix is defined as N MX 

, where the element 1ijx  represents the

assignment of target to UAV i . The task effectiveness function ( )U X is composed of a profit function ( )E X , a cost
function ( )C X , and a profit adjustment function ( )D X :

( ) ( ) ( ) ( )U X E X C X D X   . (9)

The profit function ( )E X integrates target value, damage probability, and operator reliability factors, with its
mathematical model expressed as:

1
j

t
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u h
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 
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
, (10)

where
jTARGETV represents the strategic value of the target,  is the operator error rate, P is the UAV's probability of

target destruction, and t is the current time. The cost function
jTARGETV quantifies UAV loss risk and target threat

intensity:

1 2
1

1 (1 )
i

m

u V j ij
j

C k UAV P k threat


 
      

 
 , (11)

where
iV

UAV is the asset value of UAV i , jP is the damage probability when executing a task on target j , and the
weight coefficients

1k and
2k satisfy

1 2 1k k  . To enhance the adaptability of task allocation, UAV intelligent
emotions are introduced into the profit adjustment function, with values dependent on three emotional modes (fear,
relaxation, aggression) and task profit intervals as shown in Table 3. The preference coefficient  is calibrated through
regression analysis of historical mission data, ensuring decision logic aligns with actual mission requirements.

Table 3 Impact of Different Emotional Modes on UAV Task Selection
Emotional Mode Task Preference Profit Adjustment Value

Fear Low risk, low reward Low

Relaxation Medium-low risk, medium reward Average

Aggression High risk, high reward High
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2.3.2 Self-adaptive A star algorithm

A star algorithm, as a typical representative of heuristic search algorithms, holds significant theoretical value and
engineering significance in the field of grid-based environment path planning [14]. By constructing a cost evaluation
function that balances actual path costs and heuristic estimates, the algorithm achieves efficient search while ensuring
global optimality. Its core mathematical model can be expressed as:

( ) ( ) ( )f n g n h n  , (12)

where n represents the current expanded node, ( )g n is defined as the cumulative actual path cost from the start point
to node n , and ( )h n is the heuristic function used to estimate the minimum expected cost from node n to the target
point. This study adopts the Euclidean distance:

2 2( ) ( ) ( )n goal n goalh n x x y y   
(13)

as the heuristic function. This function satisfies the admissibility condition (i.e., it does not exceed the true path cost),
thereby ensuring the algorithm's optimality. Core algorithm as shown in Algorithm 2:

Algorithm 2 Classic A* Path Planning Algorithm
Algorithm 2 Classic A* Path Planning Algorithm
1: Algorithm A_star(Start point

starts , Target point
goals , Cost function :c S S    )

2: Initialize OpenList O  , CloseList C 
3: Set ( ) 0startg s 
4: O.insert ( , ( ))start starts f s
5: while O  do
6:

currents O .extract_min()

7: if current goals s then

8: return _ ( )currentreconstruct path s
9: C.add( currents )

10: for neighs  ( )currentNeighbors s do

11: if
neighs C then continue

12: ( ) ( , )tent current current neighg g s c s s 

13: if tent neighg s then

14: ( )neigh tentg s g
15: ( ) ( ) ( )neigh neigh neighf s g s h s 

16: ( )neigh currentParent s s
17: if neighs O then

18: O.insert ( , ( ))neigh neighs f s
19: return Failure

Theoretically, the A* algorithm is guaranteed to be both complete and optimal: it will return a feasible path if a solution
exists, and it ensures global optimality when the heuristic function satisfies admissibility [15]. To enhance the
algorithm's adaptability in dynamic scenario environments, this study introduces UAV intelligent emotion mode
settings as part of the collaborative decision-making model.
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Figure 5 Path Planning Model

Of which basic structure is shown in Figure 5 the path planning problem can be formalized as a network graph search
problem, where the node set 1 2{ , ,..., }mS s s s represents the discretized scenario space, and the set of all feasible paths
from the start point to the target point is

1 2
{ | ( , ,..., )}k k i i imE e e s s s  . Defining the path ke E with adjacent node pairs

( , )i js s , their connecting edges are denoted as ( , )i jV s s , and the flight cost as
ijd . The UAV trajectory planning problem

can then be modeled as:

( , )
min ( )

i j
k ijs s E

f e d


 , s.t. , ,i j ks E s E e E   . (14)

The heuristic function ( )ih s uses Euclidean distance to estimate the remaining flight distance, ensuring algorithm
convergence and optimality. To address dynamic threat environments, an emotion-dependent threat avoidance radius is
designed as:

(1 1/ ) (1 )R e wR CD     , (15)

where R is the threat influence radius, and the UAV intelligent emotional mode wC is determined by parameters  and
 as shown in Table 4.

Table 4 Determination Range of UAV Intelligent Emotional Modes
Value of wC Emotional mode

wC  Fear

wC   Relaxation

wC  Aggression

Human-machine collaboration mechanisms are integrated throughout the task allocation and path planning process.
Operators can intervene through two types of interfaces: at the task allocation level, dynamically adjusting emotional
mode thresholds or manually specifying high-value targets; at the path planning level, setting temporary no-fly zones or
modifying threat avoidance parameters. When path risk exceeds the operator's preset threshold, an alarm signal is
triggered, suggesting task termination or replanning as shown in Figure 6. This bidirectional information flow design
ensures the stability and real-time performance of the human-machine decision-making loop.

Figure 6 Schematic Diagram of Threat Avoidance Radius
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The model improves traditional methods with three innovations: 1) modeling cognitive load and emotions as
endogenous decision variables, removing the need for human experience; 2) designing an emotion-threat-coupled path
cost function to balance safety and economy; and 3) creating a task-path joint optimization framework to reduce risks
from local optimization. Its value lies in advancing collaborative decision-making from static rule-driven to dynamic
cognition-guided evolution, enabling deeper human-machine intelligence integration.

3 RESULTS AND ANALYSIS

To validate the effectiveness of the proposed manned/unmanned collaborative decision-making framework, a
simulation experimental system was constructed based on the MATLAB platform. The experimental design follows a
progressive logic of "modular verification-scenario simulation-comprehensive evaluation," with a focus on analyzing
the performance of three core modules: threat assessment, task allocation, and path planning, in comparison with
traditional methods. In the verification of the situation and threat assessment module, a genetic algorithm was used to
optimize the 11 sets of weights in the Intuitionistic Fuzzy Cognitive Map (IFCM). The population size was set to 200,
with a crossover probability of 0.8 and a mutation probability of 0.15. After 300 iterations, the convergence curve is
shown in Figure 7. Experimental data indicate that the optimal fitness value stabilized at 0.812 (Best curve), and the
population mean converged to 0.813, demonstrating the algorithm's strong global search capability and stability. The
optimized membership and non-membership heat matrix reveals that the membership values of key threat nodes (e.g.,
target radar detection accuracy

8N ) are concentrated in the [0.6, 0.85] range. In sudden threat response tests, the model's
re-evaluation time was 0.87 seconds, meeting the real-time requirements of dynamic battlefields as shown in Figure 8.

Figure 7 IFCM Genetic Algorithm Optimization

Figure 8 Optimized Threat Assessment Membership and Non-Membership Matrix

Based on the improved Contract Net Protocol (CNP) task allocation model, a tasking scenario was constructed with
four heterogeneous UAVs targeting six opposite objectives. The heatmap of bid values optimized by Particle Swarm
Optimization (PSO) shows that UAV4, equipped with electronic countermeasure devices, achieved bid values of 0.51
and 0.47 for high-value targets T1 and T4, respectively. UAV1, in aggressive mode, increased its bid intensity for high-
risk target T1 by 26.8%. Compared to UAV2 with the same emotional mode, UAV3, when assigned to accept signals
with higher operator cognitive load, saw its intelligent emotional mode's influence on bidding relatively suppressed,
enhancing the safety and effectiveness of human-machine collaboration strategies as shown in Figure 9.
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Figure 9 Heatmap of Task Allocation Scheme and Bid Value Matrix Optimized by PSO

In an 800×600 grid tasking environment with six fixed threat sources, the improved A* algorithm was used for path
planning. A comparison of routes under three emotional modes shows that the fear mode (C=0.15) had an average
threat cost of 0.17, a 58% reduction compared to the aggressive mode, but with a 22.3% increase in path length. The
aggressive mode (C=0.85) resulted in a total threat cost of 165, while the relaxed mode (C=0.5) achieved the best
balance, with standard deviations of path length and threat cost being only 43% and 52% of the other modes,
respectively. The algorithm's average planning time was 0.64 seconds, and the sudden threat replanning response time
was 1.43 seconds, a 63% improvement over the traditional RRT algorithm. Path planning situation map as shown in
Figure 10.

Figure 10 UAV Path Planning Situation Map Under Different Emotion Modes

Overall the collaborative decision-making framework proposed in this paper has been validated at the algorithmic level.
Its core value lies in revealing the intrinsic relationships of threat elements through weight optimization heatmaps,
quantifying UAV capability differences using bid value distribution characteristics, and demonstrating the effectiveness
of the emotional adaptive mechanism through path comparison experiments. Future work should further develop
hardware-in-the-loop simulations and incorporate reinforcement learning strategies to optimize algorithm convergence,
advancing theoretical research toward practical applications.

4 CONCLUSIONS AND OUTLOOKS

This paper addresses decision-making optimization in manned/unmanned collaborative tasking by proposing a
cognitive collaboration-based decision-making framework. Through the deep integration of Dynamic Intuitionistic
Fuzzy Cognitive Maps (DIFCM), Genetic Algorithms (GA), and an improved A* algorithm, a full-process model
covering "situation assessment, threat analysis, task allocation, and path planning" is constructed. Experimental results
show that the framework surpasses traditional methods in threat assessment accuracy, task allocation efficiency, and
path planning safety. Specifically, DIFCM, optimized by genetic algorithms, enhances the real-time performance and
accuracy of threat assessment. The improved Contract Net Protocol, incorporating UAV intelligent emotional modes,
enables adaptive task allocation. Meanwhile, the emotion-driven A* algorithm demonstrates superior path planning in
dynamic threat environments. The key innovation lies in coupling human cognitive characteristics with machine
autonomous decision-making, reducing dependence on human experience and offering a novel methodological
perspective for manned/unmanned collaborative mission.
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Future research should integrate advanced reinforcement learning strategies to improve algorithm convergence and
adaptability. Additionally, hardware-in-the-loop simulations are necessary to validate the framework’s practical
applicability, ensuring its robustness in real-world tasking scenarios.
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