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Abstract: The present study aims to investigate the impact of asymptomatically infected individuals and the presence
of free virus in the environment on the transmission of influenza A virus. To this end, an infectious disease model of
influenza A virus with asymptomatic infection and environmental transmission is established.Initially, the nonnegativity
and boundedness of the global positive solution of the model are obtained, and the fundamental regeneration number of
the model R0 , is determined by the method of the spectral radius of the next-generation operator.Utilising qualitative
ordinary differential equations, stability theory and fluctuation priming, it is demonstrated that the disease-free
equilibrium point is globally asymptotically stable at R0 < 1 . Furthermore, the consistent persistence of the disease is
substantiated by constructing an auxiliary system at R0 > 1 . The validity of the theoretical results is substantiated by
numerical simulations.The innovative aspect of this paper is the integration of asymptomatic infection and
environmental transmission into a unified model. This comprehensive approach elucidates the transmission mechanism
of influenza A within the population, thus offering a novel perspective through which to attain a more profound
comprehension of the transmission of influenza A.
Keywords: A symptomatic infection; Multiple pathways of transmission; Basic regeneration number; Global
asymptotic stabilization; Uniform persistence

1 INTRODUCTION

Influenza A, is an acute respiratory infection caused by influenza A viruses. Influenza A viruses are highly mutable and
can spread rapidly among populations by droplet transmission, direct contact, and airborne aerosols[1-3]. Furthermore,
the capacity of influenza A viruses to persist and propagate on environmental surfaces underscores the potential for
their transmission under diverse environmental conditions, which in turn may shape their propagation within the
population[4-5]. The rapid and widespread dissemination of influenza A viruses has profound consequences for public
health, leading to significant morbidity and mortality, as well as substantial economic losses[6]. Historical precedent
demonstrates the capacity of influenza A to spark pandemics, as evidenced by the H1N1 epidemic of 2009[7].
Consequently, the development of effective prevention and control strategies for influenza A is of paramount
importance. The mutability of influenza A viruses poses a significant challenge in the implementation of traditional
prevention and control measures, which often prove ineffective in fully containing their spread. This underscores the
necessity for continuous exploration of novel prevention and control strategies.
Mathematical modeling has emerged as a valuable instrument in the study of infectious disease transmission,
facilitating our understanding of the underlying mechanisms and enabling accurate epidemic forecasting. This, in turn,
provides a robust scientific foundation for the development of effective public health policies. In recent years, with the
advancement of computing capabilities and the development of mathematical theory, the field of infectious disease
modeling has garnered significant attention[8]. Notably, in the context of respiratory infectious diseases, such as
influenza A, the application of mathematical models has yielded noteworthy outcomes[9].
In light of the aforementioned discussion, the objective of this paper is to develop an infectious disease model of
influenza A virus with asymptomatic infection and environmental transmission to study the kinetic behavior of
influenza A transmission. The structure of this paper is outlined as follows: The initial section of this study is devoted to
the modeling process. Subsequent sections are dedicated to the verification of two crucial properties of the global
positive solution of the model: its nonnegativity and its boundedness. The third section involves the derivation of the
fundamental regeneration number of the model and the demonstration of the existence and uniqueness of the
disease-free equilibrium point. The fourth section focuses on the proof of the global asymptotic stability of the
disease-free equilibrium point. The fifth section provides a rigorous justification for the model's consistent persistence.
Ultimately, numerical simulations are implemented to validate the accuracy of the obtained results.

2 FORMULATION OF THE MODEL

The model under consideration in this paper consists of four human compartments: susceptible (�), asymptomatically
infected (�), symptomatically infected (�), and recovered (�), and an environmental compartment: the free virus (�)
contained in the environment and released by the infected person. A diagram illustrating the model's compartmental
structure is presented in Figure 1.
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Figure 1 Diagram of the Model's Chamber

The transmission model of Influenza A is as follows:
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(1)

In the model, � represents the birth rate of the population, � denotes the natural death rate, d representative case fatality
rate for symptomatic infections, �� and � respectively represent the transmission rates from asymptomatic and
symptomatic infected individuals to susceptible individuals. �� indicates the transmission rate caused by environmental
factors, while δ represents the transfer rate from asymptomatic to symptomatic infected individuals.
Additionally,��denotes the morbidity-related mortality rate of infected individuals induced by environmental factors. �
represent the recovery rates of asymptomatic and symptomatic infected individuals, � reflect the rate of viral shedding
from asymptomatic and symptomatic infected individuals into the environment.
Given that the differential equations of � � , � � , � � , � � in the model do not include � � , � � can be
decoupled. Therefore, we consider the subsystem:
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(2)

For any solution of the system that satisfies the initial conditions � 0 , � 0 , � 0 , � 0 :
� � = � � , � � , � � , � � (3)

There exists � � ∈ �,among which，
� = { �, �, �, � ∈ �+

4 ∣� � + � � + � � + � � ≤ ��
���

+ �
�

} (4)

3 THE NON-NEGATIVITY AND BOUNDEDNESS OF THE MODEL

Theorem 1： � is the maximal positive invariant set of the model (2).
Proof ： First, we prove the non-negativity. For any solution � � , � � , � � , � � that satisfies the initial
conditions � 0 , � 0 , � 0 , � 0 . Using the contradiction method, assume there exists �0 such that � �0 = 0 and
�� �0

��
< 0 , Substituting into the first equation of model (2), we get �� �0

��
= � − ��� �0 � �0 − �� �0 � �0 −
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��� �0 � �0 − �� �0 , Therefore, �� �0
��

= � < 0 , this contradicts � > 0 , thus the assumption is not valid.

Therefore, �� �
��

≥ 0.

Considering dA t
dt

, assume that at t0, A t0 = 0 and dA t0
dt

< 0. At t1, we have I t1 = 0 and dI t1
dt

< 0. At t2, we have

� �2 = 0 and dW t2
dt

< 0 . Taking t = min{t0, t1, t2}, if t = t0 , then I t ≥ 0 and W t ≥ 0 . Thus, dA t0
dt

=

βI t0 S t0 + βeW t0 S t0 ≥ 0, Since dA t0
dt

< 0 leads to a contradiction, we conclude that �� �
��

≥ 0.

Similarly, for �� �
��

and dW t
dt

, the above method can be applied to demonstrate their non-negativity.In summary, all
state variables in model (2) are non-negative.
Next, we verify the boundedness. Summing the first three equations in model (2), we obtain:

d S + A + I = Λ − μS − μA − γA − γI − dI − μI ≤ Λ − μ S + A + I (5)
Thus,

� + � + � ≤ �
�

(6)
Moreover, since

dW = ξ A + I − μeW ≤ ξΛ
μ

(7)
it follows that:

W ≤ ξΛ
μμe

(8)
Consequently,

S + A + I + W ≤ ξΛ
μμe

+ Λ
μ

(9)
Clearly, we already know that � + � + � + � ≥ 0. Therefore, the state variables in model (2) are all bounded.
In conclusion, the theorem 1 is established. That is, Γ is the maximal positive invariant set of model (2).

4 EXISTENCE OF THE BASIC REPRODUCTION NUMBER AND THE DISEASE-FREE EQUILIBRIUM
POINT

In model (2), when � = 0, according to the second and fourth equations, it follows that � = 0 and W = 0. Substituting
into the first equation yields � = �

�
, Therefore, model (2) has a unique disease-free equilibrium point �0 = �

�
, 0,0,0 .

Next, we will calculate the basic reproduction number using the next-generation matrix method [10].
Rewrite the equations in model (2):
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(10)

as,
��
��

= ℱ1 � � , � � , � � , � � − �1 � � , � � , � � , � � (11)
��
��

= ℱ2 � � , � � , � � , � � − �2 � � , � � , � � , � � (12)
��
��

= ℱ3 � � , � � , � � , � � − �3 � � , � � , � � , � � (13)
where,

ℱ1 � � , � � , � � , � � = ��� � � � + �� � � � + ��� � � � (14)
ℱ2 � � , � � , � � , � � = �� � (15)
ℱ3 � � , � � , � � , � � = �� � + �� � (16)
�1 � � , � � , � � , � � = �� � + �� � + �� � (17)
�2 � � , � � , � � , � � = �� � + �� � + �� � (18)
�3 � � , � � , � � , � � = ��� � (19)

leads to the matrices ℱ =
ℱ1

ℱ2

ℱ3

and � =
�1
�2
�3

.The Jacobian matrices at the equilibrium point �0 = �
�

, 0,0,0 are

represented by
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� =

�ℱ1
��

�ℱ1
��

�ℱ1
��

�ℱ2
��

�ℱ2
��

�ℱ2
��

�ℱ3
��

�ℱ3
��

�ℱ3
��

=
�� � ��
� 0 0
� � 0

(20)

and

� =

��1
��

��1
��

��1
��

��2
��

��2
��

��2
��

��3
��

��3
��

��3
��

=
� + � + � 0 0

0 � + � + � 0
0 0 ��

(21)

For the sake of computational simplicity, the matrices F and V are reformulated as:

�1 =
�� � ��
0 0 0
0 0 0

�1 =
� + � + � 0 0

−� � + � + � 0
−� −� ��

(22)

After computation, the results yield:

�1
−1 =

1
�+�+�

0 0
−�

�+�+� �+�+�
1

�+�+�
0

��+� �+�+�
�+�+� �+�+� ��

�
�+�+� ��

��

(23)

Define the next-generation matrix as M = FV−1. Then, it follows that:

� =

�� �+�+� ��+����+����+��� �+�+�
�+�+� �+�+� ��

���+���
�+�+� ��

��
��

0 0 0
0 0 0

(24)

The basic reproduction number �0 is defined as the spectral radius of the matrix M. Thus, �0 is given by:
�0 = ���� �+�+� +����+��� �+�+�+�

�+�+� �+�+� ��
⋅ �

�
(25)

5 THE STABILITY OF THE DISEASE-FREE EQUILIBRIUM POINT

Theorem 2：When �0 < 1, the disease-free equilibrium point �0 = �
�

, 0,0,0 is locally asymptotically stable.
Proof：The Jacobian matrix at �0 for Model (2) is given by:

� �0 =

−� ���
�

��
�

���
�

0 ���
�

− � − � − � ��
�

���
�

0 � −� − � − � 0
0 � � − ��

(26)

It is evident that � �0 has one negative eigenvalue �1 =− � < 0, The remaining eigenvalues satisfy the equation:
(λ − βAΛ

μ
+ μ + δ + γ)(λ + γ + μ + d)(λ + μe) = βeΛξ

μ
(δ + λ + γ + μ + d) + βΛξ

μ
(λ + μe) (27)

Assuming that when �0 < 1, there exists an eigenvalue �∗, and �� �∗ ≥ 0, then we divide both sides of （26） by:
�∗ − ���

�
+ � + � + � �∗ + � + � + � �∗ + �� (28)

Taking the absolute value, we obtain:
1 = ����

��∗+���+�2+��+�� �∗+��
+ ���

��∗+���+�2+��+�� �∗+�+�+�
+ �����

��∗−���+�2+��+�� �∗+�+�+� �∗+��
(29)

Let �∗ = � + ��, � ≥ 0, then: |� + � |μ � + �� ≥ ��, � + � + � + � ≥ � + � + � + � ≥ � + � + � �� + ��� + �2 +
�� + �� ≥ �� + ��� + �2 + �� + �� ≥ ��� + �2 + �� + �� .
Thus,

1 = ����
��∗+���+�2+��+�� �∗+��

+ ���
��∗+���+�2+��+�� �∗+�+�+�

+ �����
��∗−���+�2+��+�� �∗+�+�+� �∗+��

≤ ����
���+�2+��+�� ��

+
���

���+�2+��+�� �+�+�
+ �����

���+�2+��+�� �+�+� ��
= ����+��� �+�+�+�

���
� +�+�+� �+�+� ��

⋅ �
�

(30)

Moreover, based on the result for R0, it can be reformulated as follows:
����+��� �+�+�+�

�+�+� �+�+� ��
⋅ �

�
= �0 − ���� �+�+�

�+�+� �+�+� ��
⋅ �

�
(31)

Consequently, we deduce that 1 ≤ �0 − ���� �+�+�
�+�+� �+�+� ��

⋅ �
�

is in direct contradiction with �0 < 1 , thereby
demonstrating that the initial assumption is invalid.
Therefore, when �0 < 1 , all the eigenvalues of � �0 exhibit negative real parts, implying that the disease-free
equilibrium point of model (2) is locally asymptotically stable.
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Lemma 1[11]：Let � be bounded and continuously differentiable. Then there exist two sequences {��} and {��} such
that �� → ∞, �� → ∞, � �� → �∞, �' �� → 0, � �� → �∞ and �' �� → 0 as � → ∞.

Theorem 3: When R0 <1, the disease-free equilibrium point �0 = �
�

, 0,0,0 is globally asymptotically stable.
Proof: For the model (10):
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Let the sequence {��}, substituting this into the model yields:
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(32)
From Lemma 1, it can be concluded that when �� → ∞, � �� → �∞ , � �� → �∞ and �’ �� → 0. Therefore, it can
be derived from the second equation of the system of equations (32) that:

d� ��
��

≤ ��∞ − � + � + � �∞, 0 ≤ ��∞ − � + � + � �∞ (33)

�∞ ≤ �
�+�+�

�∞ (34)

Similarly, it can be inferred from the third equation of the system of equations (4) that �∞ ≤ �
��

+ ��
�� �+�+�

�∞ , For

the first equation of the system of equations (4) : �� ��
��

≤ ���∞�∞ + ��∞�∞ + ���∞�∞ − � + � + � �∞ , it can be

readily deduced that : �∞ ≤ �
�
, By substituting the values, it can be derived that : 0 ≤ ��

�
�

+ � �
�

�
�+�+�

+ ��
�
�

�
��

+
��

�� �+�+�
− � + � + � �∞ , it can be concluded that : �∞ ≤ �0�∞ , Additionally, given that �0 < 1 , it can be

inferred that �∞ = 0 , which subsequently leads to the conclusion that �∞ = 0 and �∞ = 0 . From this, it can be
deduced that � → 0, � → 0, � → 0.
Let us further define a sequence {��} . Substituting this sequence into the first equation of Model (2) results in the
following expression:

�� ��
���

= � − ��� �� � �� − �� �� � �� − ��� �� � �� − �� �� (35)

From Lemma 1, it can be concluded that when �� → ∞, �� ��
���

→ 0, � �� → �∞ = 0 � �� → �∞ = 0 and � �� →

�∞ = 0 . Therefore, 0 = � − ��∞ , �∞ = �
�
, then �∞ = �∞ = �

�
. Thus, the disease-free equilibrium point �0 is

globally attractive. Furthermore, according to Theorem 2, the disease-free equilibrium point �0 is locally
asymptotically stable, thus indicating that E0 is globally asymptotically stable.

6 UNIFORM PERSISTENCE OF THE MODEL

Theorem 4：When �0 > 1, the model (2) demonstrated uniform persistence behavior. That is, there exists � > 0 such
that :

���
�→∞

��� � � , � � , � � ≥ �, �, �

Proof: Dfine � = {� � , � � , � � , � � |� + � + � + � ≤ ��
���

+ �
�

} , where
�0 = { �, �, �, � ∈ �|�, �, �, � > 0}, let ��0 = � ∖ �0. From model (2), we obtain :

� � ≥ � �0 �− �+�+� �−�0 ≥ 0 (36)
� � ≥ � �0 �− �+�+� �−�0 ≥ 0 (37)
� � ≥ � �0 �−�� �−�0 ≥ 0 (38)

Thus, � and �0 are positively invariant sets, and ��0 is relative closed set of � let:
�� = {� 0 , � 0 , � 0 , � 0 |� � , � � , � � , � � ∈ ��0}, ∀� ≥ 0

It is demonstrated that �� = {� 0 , 0,0,0|� � ≥ 0} holds true, clearly, {�(0), 0,0,0|�(�) ≥ 0} ⊆ �� and to prove
�� ⊆ {� 0 , 0,0,0|� � ≥ 0}. Let � 0 , � 0 , � 0 , � 0 ∈ ��. It is essential to establish that for all ∀� ≥ 0, � � =
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0, � � = 0, � � = 0. This argument employs proof by contradiction, assuming otherwise, there exists a ∃�0 ≥ 0 such
that:

(i)� �0 > 0 (ii)� �0 > 0 (iii)� �0 > 0

For (ii), solving for (37) yields: For all t > t0 , there exists � � > 0 , substituting into model (2) yields � � >
0, � � > 0, thus � � , � � , � � , � � ∉ ��0 , This contradicts the assumption. A contradiction can be derived in a
similar manner for (iii). For (i), when � > �0 , it can be inferred that � � = � �0 � �+�+� + �0

� ��� � � �+�+�� �� .
Clearly, when � � > 0, we have � � > 0. Similarly, it follows that � � > 0.
In summary, � � , � � , � � , � � ∉ ��0 contradicts the hypothesis. Thus, it is proven
�� = {� 0 , 0,0,0|� � ≥ 0}. The disease-free equilibrium point �0 of model (2) is globally asymptotically stable, and
there is only one equilibrium point �0 in ��.
We will next demonstrate that �0 exhibits weak exclusion with respect to the set �0 , which requires showing that
lim
t→∞

supd Φ t , E0 > 0. It suffices to prove that W E0
s ∩ x0 = ∅. Using a proof by contradiction, we assume that this

conclusion is not valid. Therefore, there exists a positive solution S t , A t , I t , W t for model (2), such that
lim
t→∞

S t , A t , I t , W t = S0, 0,0,0 .

Define � = � − � , given that �0 > 1 , it follows that � � > 0 , For sufficiently small � > 0 , there exists � � −
�� > 0. In this context,

�� =
��� �� ���
0 0 0
0 0 0

(39)

There exists � > 0 such that ∀� > �, there holds �0 − � < � � < �0 + �, leading to the derivation of the differential
inequality:

��
��

≥ �� �∘ − � � + � �∘ − � � + �� �∘ − � � − � + � + � �
��
��

= �� − � + � + � �
��
��

= �� + �� − ���

(40)

Consider the auxiliary system:
��
��

= �� �∘ − � � + � �∘ − � � + �� �∘ − � � − � + � + � �
��
��

= �� − � + � + � �
��
��

= �� + �� − ���

(41)

Because � � − �� > 0, as t → ∞, it follows that A t → ∞, I t → ∞, W t → ∞. This contradicts the assumption
that � � → 0, � � → 0, � � → 0 when � → ∞[12], thus, it is proven: � �0

� ∩ �0 = ∅.
In summary, it can be obtained that when �0 > 1, the model (2) concerning �0, ��0 persists consistently.

7 NUMERICAL SIMULATION

Assuming:
� = 1.4, �� = 0.0001, � = 0.0001, �� = 0.003, � = 0.01, � = 0.05, �� = 0.01, � = 0.006, � = 0.001, � = 0.02 , the
calculation yields �0 = 0.912, �0 < 1 . According to Theorem 4, the model (2) has a globally asymptotically stable
disease-free equilibrium point, and its numerical simulation is shown in Figure 2.
Assuming:
� = 1.4, �� = 0.0001, � = 0.0001, �� = 0.01, � = 0.007, � = 0.05, �� = 0.01, � = 0.006, � = 0.001, � = 0.02 , the
calculation yields �0 = 3.764, �0 > 1 . According to Theorem 5, the model (2) is uniformly persistent, and its
numerical simulation is shown in Figure 3.
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Figure 2 �0 < 1

Figure 3 �0 > 1

8 CONCLUSION

This study establishes a comprehensive dynamical model for the transmission of H1N1 influenza virus, considering
asymptomatic infection mechanisms and environmental transmission pathways.(SAIWR model). In-depth analysis of
the dual roles of asymptomatic carriers and environmental virus transmission mechanisms on the dynamics of epidemic
evolution. Firstly, the study rigorously demonstrates the non-negativity and boundedness of the model, thereby ensuring
a robust mathematical foundation for epidemiological research. Subsequently, utilizing the next-generation matrix
method, this study derives an analytical expression for the basic reproduction number R0 , thereby establishing
threshold criteria for disease transmission dynamics.The theoretical results are validated through numerical simulations,
providing a quantitative assessment tool and a theoretical basis for formulating strategies for epidemic prevention and
control.Subsequent studies will prioritize the incorporation of more authentic parameters, the formulation of models
such as age structure, and the investigation of the impact of vaccination and antiviral treatment on enhancing the
predictive accuracy and public health applicability of these models.

COMPETING INTERESTS

The authors have no relevant financial or non-financial interests to disclose.

REFERENCES

[1] Xu L, Yue L, Yang X, et al. Research of a Reference Material of Inactivated Influenza A (H1N1) Virus. Acta
Metrologica Sinica, 2024, 45(2): 294-299.

[2] He F, Yu H, Liu L, et al. Antigenicity and genetic properties of an Eurasian avian-like H1N1 swine influenza virus
in Jiangsu Province, China. Biosafety and Health, 2024, 6(6): 319-326.



WenXuan Li

Volume 7, Issue 1, Pp 43-50, 2025

50

[3] KAWANO H, HARUYAMA T, HAYASHI Y, et al. Genetic Analysis and Phylogenetic Characterization of
Pandemic (H1N1) 2009 Influenza Viruses that Found in Nagasaki, Japan. Japanese journal of infectious diseases,
2011, 64(3): 195-203.

[4] EDWARD A. PARTLOW, ANNA JAEGGI-WONG, STEVEN D. PLANITZER, et al. Influenza A virus rapidly
adapts particle shape to environmental pressures. Nature Microbiology, 2025, 10(3): 784-794.

[5] Zhang Yijie, Meng Fei, Yang Huanliang, et al. Genetic Evolution Analysis of a Strain of H1N1 Subtype Swine
Influenza Virus and Evaluation of Its Replication and Droplet Transmission in Ferrets. Chinese Journal of
Preventive Veterinary Medicine, 2023, 45(10): 987-993.

[6] Xiao D, Liu J, Jiang T, et al. Transmission restriction and genomic evolution co-shape the genetic diversity
patterns of influenza A virus. Chinese Journal of Virology, 2024, 39(4): 525-536.

[7] MALTEZOU HC. Novel (pandemic) influenza A H1N1 in healthcare facilities: implications for prevention and
control. Scandinavian Journal of Infectious Diseases, 2010, 42(6/7): 412-420.

[8] SHUAI Z, VAN DEN DRIESSCHE P. Global stability of infectious disease models using lyapunov functions.
SIAM Journal on Applied Mathematics, 2013, 73(4): 1513-1532.

[9] Liu T, Zhao Z, Yao M, et al. Establishment and realization of the SEIAR infectious disease dynamics model.
Disease Surveillance, 2020, 35(10): 934-938.

[10] VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for
compartmental models of disease transmission. Mathematical Biosciences: An International Journal, 2002,
180(special issue si): 29-48.

[11] WANG XIA, CHEN YUMING, SONG XINYU. Global dynamics of a cholera model with age structures and
multiple transmission modes. International journal of biomathematics, 2019, 12(5).

[12] ZHANG F, ZHAO XQ. A periodic epidemic model in a patchy environment. Journal of Mathematical Analysis
and Applications, 2007, 325(1): 496-516.


