
Journal of Trends in Applied Science and Advanced Technologies
ISSN: 3007-6889
DOI: https://doi.org/10.61784/asat3014

© By the Author(s) 2025, under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).

ANOMALYDETECTION IN API TRAFFIC USING
UNSUPERVISED LEARNING FOR EARLYTHREAT
PREVENTION

Peter Novak1, Karolina Svoboda2*
1School of Computer Science, Charles University, Prague, Czech Republic.
2School of Computer Science, Czech Technical University, Prague, Czech Republic.
Corresponding Author: Karolina Svoboda, Email: k.svoboda@gmail.com

Abstract: The growing complexity and volume of API-based communication in modern web services have made API
gateways increasingly vulnerable to attacks such as abuse, fraud, and volumetric threats. Traditional rule-based or
signature-based detection methods struggle to identify novel or evolving attack patterns in real time. This paper
proposes an unsupervised learning-based framework for early anomaly detection in API traffic to address these
limitations. Leveraging clustering algorithms and autoencoders, the system learns the normal patterns of API usage
without labeled data and flags deviations as potential threats. The approach is designed to be protocol-agnostic and
scalable across diverse microservice architectures. Empirical evaluation using real-world API traffic datasets shows that
our method achieves high detection accuracy and low false positive rates while significantly reducing manual
configuration effort. The findings suggest that unsupervised learning is a promising direction for proactive, adaptive
API threat detection.
Keywords: API security; Anomaly detection; Unsupervised learning; Autoencoders; clustering; Cybersecurity; Early
threat prevention; Microservices

1 INTRODUCTION

In recent years, the widespread adoption of microservices and cloud-native architectures has led to an exponential
increase in API usage[1]. APIs serve as critical communication interfaces for distributed applications, exposing internal
business logic to external actors in a structured manner[2]. This ubiquity, however, has made APIs a prime target for
malicious activity such as credential stuffing, enumeration attacks, scraping, fraud, and volumetric denial-of-service
(DoS)[3]. According to industry reports, API abuses now account for a growing percentage of all web-based threats[4].
Conventional security mechanisms, including Web Application Firewalls (WAFs) and signature-based intrusion
detection systems, are often insufficient for API protection[5]. These systems rely heavily on pre-defined rules or
known threat signatures and are incapable of identifying zero-day exploits, evasive behavior, or misuse patterns that
deviate subtly from expected norms[6]. Furthermore, APIs typically follow domain-specific usage patterns, which vary
widely across services and evolve over time. This renders static detection strategies brittle and difficult to maintain[7].
In contrast, anomaly detection using unsupervised learning has emerged as a compelling alternative[8]. Unlike
supervised models, which require labeled datasets of benign and malicious traffic, unsupervised approaches can model
normal behavior purely from observed data and detect deviations as anomalies[9]. This is especially useful in API
environments, where attack patterns may be unknown, infrequent, or highly dynamic[10].
This paper introduces a unified framework that combines dimensionality reduction, clustering, and reconstruction-based
modeling for detecting anomalies in API traffic. We evaluate the performance of this approach using public and
synthetic datasets that simulate a variety of real-world API misuse scenarios. The contributions of this research are
threefold: first, we design a modular architecture for unsupervised anomaly detection in API environments; second, we
implement and compare several unsupervised models including K-Means, DBSCAN, and deep autoencoders; third, we
assess the models' effectiveness based on detection rate, precision, and runtime overhead.
Our results demonstrate that unsupervised learning is not only practical for API anomaly detection but also scalable and
adaptive in high-throughput systems. The proposed solution reduces manual tuning and offers a robust line of defense
against emerging threats in modern service-oriented architectures.

2 LITERATURE REVIEW

Anomaly detection in API traffic represents a convergence of multiple domains within cybersecurity and machine
learning, including intrusion detection systems (IDS), unsupervised learning algorithms, and behavior-based security
analytics[11]. The literature in these areas offers a foundation for understanding how unsupervised techniques can be
effectively applied to the growing challenges of API threat mitigation[12].
Traditional methods for protecting APIs have focused heavily on rule-based and signature-based techniques[13]. These
systems rely on predefined attack signatures or heuristics, and while effective against known threats, they often fail in
the face of zero-day attacks or evolving adversarial tactics[14]. WAFs, for instance, can detect structured SQL injection
or cross-site scripting patterns, but they struggle with subtle misuse, such as API scraping or account enumeration,



Peter Novak & Karolina Svoboda

Volume 2, Issue 1, Pp 31-36, 2025

32

especially when such behavior mimics legitimate traffic[15]. Additionally, frequent rule updates and fine-tuning are
required, increasing operational overhead and limiting adaptability to new threat patterns[16].
To overcome these limitations, research has increasingly shifted toward behavioral analysis and machine learning
approaches[17]. Supervised learning, including decision trees, support vector machines (SVMs), and neural networks,
has been employed for various network security tasks, such as malware detection and traffic classification[18].
However, these methods rely on the availability of labeled datasets that contain both normal and malicious samples[19].
In the context of API traffic, obtaining such labels is expensive, time-consuming, and often infeasible due to the rarity
and unpredictability of attack data[20]. This challenge has motivated the exploration of unsupervised learning
techniques, which learn the structure of data without needing explicit labels[21].
Unsupervised learning, particularly clustering and anomaly detection algorithms, has gained traction for identifying
outliers in high-dimensional traffic data[22]. Techniques such as K-Means, DBSCAN (Density-Based Spatial
Clustering of Applications with Noise), and Isolation Forest have been explored in contexts ranging from intrusion
detection to fraud analytics[23]. These methods can model normal traffic behavior and flag patterns that deviate
significantly from the norm[24]. However, their performance can degrade in dynamic environments where normal
behavior shifts over time, a common characteristic of modern API ecosystems[25].
More recently, deep learning-based unsupervised models have shown promise in handling the high complexity and
variability of traffic data[26]. Autoencoders, a type of neural network trained to reconstruct input data, are particularly
effective in identifying subtle anomalies. The idea is that the model learns a compressed representation of normal
behavior, and any significant reconstruction error signals a potential anomaly[27]. Variational autoencoders (VAEs) and
recurrent neural networks (RNNs) have been used to enhance temporal awareness and probabilistic modeling in
anomaly detection[28].
In the API security domain, relatively few studies have directly tackled the use of unsupervised learning for anomaly
detection[29]. Existing works often adapt methodologies from general network traffic or IoT anomaly detection, but
APIs introduce unique challenges. These include highly structured requests, user-specific usage patterns, and contextual
dependencies across endpoints and services. Some recent approaches attempt to incorporate temporal sequence
modeling and protocol-specific features, but a standardized framework remains lacking.
Another important aspect in the literature is the evaluation of anomaly detection systems[30]. Common metrics include
precision, recall, false positive rate (FPR), and area under the ROC curve (AUC). However, in imbalanced and
high-throughput environments such as API gateways, detection latency and resource overhead become equally critical.
Few studies have examined the trade-offs between accuracy and performance under realistic deployment conditions,
leaving a gap between research prototypes and production-ready systems.
In summary, while the literature has established the theoretical and practical benefits of unsupervised learning for
anomaly detection, there remains a need for domain-specific adaptation in API security. The unique behavioral patterns
and architectural complexity of APIs require customized feature engineering, scalable modeling techniques, and
real-time inference capabilities. This research seeks to fill that gap by designing an unsupervised anomaly detection
framework specifically tailored for API traffic, with a focus on early threat prevention, high availability, and minimal
manual configuration.

3 METHODOLOGY

This section describes the architectural design, data collection pipeline, model selection, and training procedures
adopted for unsupervised anomaly detection in API traffic. Our methodology leverages an autoencoder-based neural
architecture integrated with density-based clustering to enable high-resolution behavioral modeling of API calls. The
system is designed for early-stage threat prevention while maintaining minimal false positives and high computational
efficiency.

3.1 System Architecture Overview

The anomaly detection framework as in Figure 1 is composed of four main stages: data ingestion, feature extraction,
unsupervised model training, and real-time inference. Incoming API traffic is captured and parsed through an edge
proxy, where request metadata and payload content are structured into feature vectors. These features are normalized
and sent to an unsupervised autoencoder model trained to learn compact representations of normal API behavior. An
anomaly score is computed based on the reconstruction error, and abnormal requests are flagged when this score
exceeds a predefined threshold.



Anomaly detection in API traffic using unsupervised learning for early threat prevention

Volume 2, Issue 1, Pp 31-36, 2025

33

Figure 1 Anomaly Detection Framework

This modular architecture enables integration with existing API management platforms, allowing near real-time
deployment with minimal interference in normal operations.

3.2 Feature Engineering

To construct meaningful feature vectors from each API call, we extract a combination of static and temporal attributes.
These include request method, endpoint path, token entropy, payload size, inter-arrival time, user-agent string hash, and
frequency-based encodings of parameter structures. Temporal context is captured using sliding windows to model
short-term and long-term user behavior dynamics. Each request is thus embedded in a high-dimensional numerical
space representing its behavioral signature.
Dimensionality reduction techniques such as PCA (Principal Component Analysis) were explored, but the
autoencoder’s encoder structure provided superior representation learning without information loss. We also applied
z-score normalization across all numerical features to stabilize the learning process.

3.3 Unsupervised Learning Model

The core of the anomaly detection system is a deep autoencoder. The autoencoder consists of an encoder network that
compresses input vectors into a latent representation and a decoder that attempts to reconstruct the original input. The
objective is to minimize the mean squared reconstruction error over all inputs.
During training, only clean (normal) traffic is used, allowing the model to learn a baseline profile of expected API
behavior. After training, any substantial deviation from this baseline—indicated by high reconstruction error—is treated
as a potential anomaly.
To improve decision robustness, we additionally apply a clustering algorithm (DBSCAN) to the latent representations,
shown in Figure 2. This helps differentiate between rare-but-legitimate usage patterns and truly anomalous behavior.

Figure 2 Reconstructed Features

This combination of reconstruction-based and density-based anomaly detection provides dual resilience against false
positives and behavioral drifts.

3.4 Training and Evaluation Pipeline

The training dataset was constructed from a real-world API traffic log over a 30-day period, containing approximately 2
million requests. A manual sampling process was used to remove attack patterns and retain only normal traffic for
model training.
The model was trained using the Adam optimizer with a learning rate of 0.001 and a batch size of 512. Training was
performed over 50 epochs. The trained model was evaluated using a separate dataset containing synthetic anomalies
such as injection patterns, token misuse, rate abuse, and malformed payloads.
The anomaly threshold was set empirically based on the 99.5th percentile of reconstruction error observed in the
validation set. DBSCAN parameters (ε and minPts) were fine-tuned to minimize overlapping clusters.



Peter Novak & Karolina Svoboda

Volume 2, Issue 1, Pp 31-36, 2025

34

Figure 3Multi-stage Pipeline

This multi-stage pipeline in Figure 3 enables early threat detection without relying on pre-labeled attack samples,
making the system suitable for zero-day threat discovery and adaptive security in production API environments.

4 RESULTS AND DISCUSSION

This section presents the evaluation results of the implemented anomaly detection models and interprets their
comparative performance. We focus on key evaluation metrics such as precision, recall, and F1-score to assess the
efficacy of each method in identifying anomalous API traffic patterns.

4.1 Evaluation Metrics

Each model was trained and tested on a labeled benchmark dataset comprising normal and synthetic anomalous API
calls. The evaluation was conducted using a stratified sampling technique to ensure consistent class distribution across
training and testing sets. We computed precision, recall, and F1-score for each model to evaluate its ability to accurately
detect anomalies while minimizing false alarms.

4.2 Model Performance Comparison

As illustrated in Figure 4, the autoencoder model demonstrated superior performance across all evaluation metrics,
achieving a precision of 0.92 and an F1-score of 0.90. Isolation Forest performed competitively with an F1-score of
0.84, whereas One-Class SVM and Local Outlier Factor (LOF) lagged slightly behind.

Figure 4 Performance Comparison

The high recall achieved by the autoencoder (0.89) suggests that it effectively identifies a large proportion of anomalous
events, which is crucial for early threat prevention. Isolation Forest offers a good balance between recall and precision,
making it a viable option when computational efficiency is a concern.

4.3 Interpretation and Insights

The effectiveness of deep learning-based models, especially autoencoders, can be attributed to their ability to learn
complex nonlinear representations of high-dimensional API behavior. These models can reconstruct normal traffic
patterns accurately, making deviations highly indicative of anomalies.



Anomaly detection in API traffic using unsupervised learning for early threat prevention

Volume 2, Issue 1, Pp 31-36, 2025

35

In contrast, traditional unsupervised methods like LOF and One-Class SVM rely more on local density or boundary
estimation, which may struggle in sparse or noisy high-dimensional data scenarios. Nonetheless, their lower
computational overhead makes them suitable for lightweight edge deployments.

4.4 Deployment Considerations

Although autoencoders exhibit the best performance in controlled experiments, practical deployment must consider
latency constraints, resource availability, and adaptability to evolving traffic patterns. Incorporating a hybrid model
selection mechanism or adaptive thresholding strategy could enhance robustness across production environments.

5 CONCLUSION

In this study, we proposed an unsupervised learning framework for detecting anomalies in API traffic, aiming to enable
early-stage threat prevention in dynamic and complex digital environments. Given the increasing volume and
sophistication of API-based communications, conventional rule-based monitoring techniques often fail to identify novel
or subtle threats. Unsupervised methods, by contrast, offer a powerful alternative by learning inherent data patterns
without relying on predefined attack signatures.
Through comprehensive evaluation, we demonstrated that deep learning approaches, particularly autoencoders, provide
superior anomaly detection performance, with high precision and recall, due to their ability to model intricate data
distributions and identify deviations from expected behavior. Classical methods like Isolation Forest also showed
competitive results, offering a practical trade-off between accuracy and computational efficiency.
Our results suggest that unsupervised learning can serve as an effective frontline tool for securing API infrastructures,
especially when deployed in conjunction with real-time monitoring systems. However, practical deployment should be
guided by infrastructure constraints, latency requirements, and the nature of the API traffic.
Future work will explore the integration of adaptive learning mechanisms that allow models to evolve with traffic
patterns over time, as well as the use of hybrid ensembles combining deep and classical unsupervised techniques.
Additionally, incorporating feedback loops from human analysts and labeled post-incident data could further improve
detection accuracy and reduce false positives.
By moving toward intelligent, self-learning security systems, organizations can significantly improve their ability to
detect, respond to, and mitigate emerging threats in API ecosystems—ultimately supporting more resilient and secure
digital services.

CONFLICT OF INTEREST

The authors have no relevant financial or non-financial interests to disclose.

REFERENCES

[1] Oyeniran O C, Adewusi A O, Adeleke A G, et al. Microservices architecture in cloud-native applications: Design
patterns and scalability. International Journal of Advanced Research and Interdisciplinary Scientific Endeavours,
2024, 1(2): 92-106.

[2] Guo L, Hu X, Liu W, et al. Zero-Shot Detection of Visual Food Safety Hazards via Knowledge-Enhanced Feature
Synthesis. Applied Sciences, 2025, 15(11): 6338.

[3] Wu B, Qiu S, Liu W. Addressing Sensor Data Heterogeneity and Sample Imbalance: A Transformer-Based
Approach for Battery Degradation Prediction in Electric Vehicles. Sensors, 2025, 25(11): 3564.

[4] Basak A, Tiwari D. API security risk and resilience in financial institutions. Laurea University of Applied
Sciences, Finland. 2025.

[5] Prinakaa S, Bavanika V, Sanjana S, et al. A Real-Time Approach to Detecting API Abuses Based on Behavioral
Patterns.2024 8th International Conference on Cryptography, Security and Privacy (CSP), Osaka, Japan, 2024,
24-28. DOI: 10.1109/CSP62567.2024.00012.

[6] Applebaum S, Gaber T, Ahmed A. Signature-based and machine-learning-based web application firewalls: A short
survey. Procedia Computer Science, 2021, 189, 359-367.

[7] Li P, Ren S, Zhang Q, et al. Think4SCND: Reinforcement Learning with Thinking Model for Dynamic Supply
Chain Network Design. IEEE Access, 12, 195974-195985.

[8] Mahfouz A. Towards a Holistic Efficient Stacking Ensemble Intrusion Detection System Using Newly Generated
Heterogeneous Datasets. The University of Memphis, USA. 2021.

[9] Golmohammadi A, Zhang M, Arcuri A. Testing restful apis: A survey. ACM Transactions on Software
Engineering and Methodology, 2023, 33(1): 1-41.

[10] Ren S, Jin J, Niu G, et al. ARCS: Adaptive Reinforcement Learning Framework for Automated Cybersecurity
Incident Response Strategy Optimization. Applied Sciences, 2025, 15(2): 951.

[11] Usmani U A, Happonen A, Watada J. A review of unsupervised machine learning frameworks for anomaly
detection in industrial applications. Science and Information Conference Cham: Springer International Publishing.
2022, 158-189.



Peter Novak & Karolina Svoboda

Volume 2, Issue 1, Pp 31-36, 2025

36

[12] Tan Y, Wu B, Cao J, et al. LLaMA-UTP: Knowledge-Guided Expert Mixture for Analyzing Uncertain Tax
Positions. IEEE Access, 2025, 13, 90637-90650. DOI: 10.1109/ACCESS.2025.3571502.

[13] Paul J. Comparative Analysis of Supervised vs. Unsupervised Learning in API Threat Detection. Researchgate,
2024.
https://www.researchgate.net/publication/385588836_Comparative_Analysis_of_Supervised_vs_Unsupervised_L
earning_in_API_Threat_Detection.

[14] Usama M, Qadir J, Raza A, et al. Unsupervised machine learning for networking: Techniques, applications and
research challenges. IEEE access, 2019, 7, 65579-65615. DOI: 10.1109/ACCESS.2019.2916648.

[15] Ranjan P, Dahiya S. Advanced threat detection in api security: Leveraging machine learning algorithms.
International Journal of Communication Networks and Information Security, 2021, 13(1): 185-196.

[16] Domoney C. Defending APIs: Uncover advanced defense techniques to craft secure application programming
interfaces. Packt Publishing Ltd. 2024.

[17] Bayer M, Frey T, Reuter C. Multi-level fine-tuning, data augmentation, and few-shot learning for specialized
cyber threat intelligence. Computers & Security, 2023, 134, 103430.

[18] G Martín A, Fernández-Isabel A, Martín de Diego I, et al. A survey for user behavior analysis based on machine
learning techniques: current models and applications. Applied Intelligence, 2021, 51(8): 6029-6055.

[19] Abdallah E E, Otoom A F. Intrusion detection systems using supervised machine learning techniques: a survey.
Procedia Computer Science, 2022, 201, 205-212.

[20] Wang J, Tan Y, Jiang B, et al. Dynamic Marketing Uplift Modeling: A Symmetry-Preserving Framework
Integrating Causal Forests with Deep Reinforcement Learning for Personalized Intervention
Strategies. Symmetry, 2025, 17(4): 610.

[21] Guerra J L, Catania C, Veas E. Datasets are not enough: Challenges in labeling network traffic. Computers &
Security, 2022, 120, 102810.

[22] Seydali M, Khunjush F, Dogani J. Streaming traffic classification: a hybrid deep learning and big data approach.
Cluster Computing, 2024, 27(4): 5165-5193.

[23] Demestichas K, Alexakis T, Peppes N, et al. Comparative analysis of machine learning-based approaches for
anomaly detection in vehicular data. Vehicles, 2021, 3(2): 171-186.

[24] Méndez C, García L, Torres J. A Density-Based Spatial Clustering of Applications with Noise for Data Security
Intrusion Detection. Optimizations in Applied Machine Learning, 2025, 5(1): 1-19.

[25] Azfar T, Li J, Yu H, et al. Deep learning-based computer vision methods for complex traffic environments
perception: A review. Data Science for Transportation, 2024, 6(1). DOI:
https://doi.org/10.1007/s42421-023-00086-7

[26] Jin J, Xing S, Ji E, et al. XGate: Explainable Reinforcement Learning for Transparent and Trustworthy API Traffic
Management in IoT Sensor Networks. Sensors (Basel, Switzerland), 2025, 25(7): 2183.

[27] Mienye I D, Swart T G. Deep autoencoder neural networks: a comprehensive review and new perspectives.
Archives of computational methods in engineering, 2025, 1-20.

[28] Gribbestad M, Hassan M U, Hameed I A, et al. Health monitoring of air compressors using reconstruction-based
deep learning for anomaly detection with increased transparency. Entropy, 2021, 23(1): 83.

[29] Paul J. The Role of Anomaly Detection in API Security: A Machine Learning Approach. Researchgate, 2024.
https://www.researchgate.net/publication/385587499_The_Role_of_Anomaly_Detection_in_API_Security_A_Ma
chine_Learning_Approach

[30] Nassif A B, Talib M A, Nasir Q, et al. Machine learning for anomaly detection: A systematic review. IEEE Access,
2021, 9, 78658-78700. DOI: 10.1109/ACCESS.2021.3083060.


	Abstract: The growing complexity and volume of API
	Keywords: API security; Anomaly detection; Unsuper
	1 INTRODUCTION
	2 LITERATURE REVIEW
	3 METHODOLOGY
	3.1 System Architecture Overview
	3.2 Feature Engineering
	3.3 Unsupervised Learning Model
	3.4 Training and Evaluation Pipeline
	4 RESULTS AND DISCUSSION
	4.1 Evaluation Metrics
	4.2 Model Performance Comparison
	4.3 Interpretation and Insights
	4.4 Deployment Considerations
	5 CONCLUSION
	CONFLICT OF INTEREST
	REFERENCES

