
World Journal of Engineering Research
ISSN: 2959-9873
DOI: https://doi.org/10.61784/wjer3030

© By the Author(s) 2025, under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).

GRAPHAUTOENCODERS: A SURVEY

LiNing Yuan
School of Information Technology, Guangxi Police College, Nanning 530028, Guangxi, China.
Corresponding Email: yuanlining@gcjcxy.edu.cn

Abstract: Graph analysis serves as a robust approach for the in-depth exploration of the inherent characteristics of
graph data. Nonetheless, due to the non-Euclidean nature of such data, conventional data analysis techniques often incur
significant computational expenses and spatial overhead. Graph autoencoders present a viable solution to the challenges
associated with graph analysis by converting the original graph data into a low-dimensional representation while
maintaining essential information. This transformation subsequently improves the efficacy of various downstream tasks,
including node classification, link prediction, and node clustering. This paper offers a thorough review of the existing
literature on graph autoencoders, encapsulating the fundamental strategies employed by these models and their
applications in downstream tasks. Additionally, the paper suggests prospective avenues for future research in the
domain of graph autoencoders.
Keywords: Graph autoencoders; Graph representation learning; Graph neural networks; Graph analysis tasks

1 INTRODUCTION

Graphs serve as prevalent information carriers within complex systems, adept at encapsulating a multitude of intricate
relationships found in various domains, including social networks [1], criminal networks [2], and transportation
networks [3]. As a representation of non-Euclidean data, graph structures present significant challenges when directly
applied to deep learning methodologies such as Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs). To facilitate feature representation in graph data mining, graph encoders are employed to map nodes
into a low-dimensional space, thereby producing low-dimensional vectors that preserve critical information from the
original graph. Presently, these methodologies have not only demonstrated efficacy in machine learning tasks associated
with complex networks, such as node classification [4], link prediction [5], node clustering [6], and visualization [7],
but have also found extensive application in practical scenarios, including social influence modeling [8] and content
recommendation [9].
Initial iterations of graph autoencoders primarily focused on data dimensionality reduction, constructing similarity
graphs based on neighborhood relationships and embedding nodes into low-dimensional vector spaces while ensuring
the preservation of similarity among connected node vectors. However, these methods often exhibit high time
complexity, which poses challenges for scalability in large graphs. In recent years, there has been a notable shift in
graph autoencoder algorithms towards more scalable solutions. Although numerous reviews have been conducted to
summarize and categorize these methodologies, they predominantly emphasize traditional approaches, thereby
neglecting many emerging models.
This paper aims to provide a thorough and systematic review of graph autoencoder methodologies, contributing in the
following ways: (1) a systematic analysis of existing models that offers novel insights into the understanding of current
techniques; and (2) the identification of potential research directions for the advancement of graph autoencoders.

2 METHODS

The autoencoders [10] are specific type of artificial neural networks that comprises two components: an encoder and a
decoder, which are employed to create vector representations of input data in an unsupervised fashion. By capturing the
nonlinear relationships inherent in the data, the autoencoder enables the representations derived from the hidden layer to
possess a lower dimensionality than the original input data, thereby facilitating dimensionality reduction. Graph
embedding techniques that leverage autoencoders utilize these networks to model the nonlinear structures of graphs,
resulting in the generation of low-dimensional embedding representations. These techniques have their origins in
GraphEncoder, which employs sparse autoencoders. The fundamental concept involves inputting a normalized graph
similarity matrix as the original feature set for the nodes into the sparse autoencoder for hierarchical pre-training. This
process allows the resulting low-dimensional nonlinear embeddings to approximate the reconstruction of the input
matrix while maintaining its sparse characteristics. GraphEncoder [11] effectively compresses the information
contained in the input matrix X into a low-dimensional embedding Y, which is subsequently optimized using L2
reconstruction loss. The use of sparse autoencoders not only reduces computational complexity but also provides a more
flexible and efficient alternative compared to traditional spectral clustering methods.
SDNE [12] employs deep autoencoders in conjunction with first-order and second-order similarities of the graph to
effectively model complex nonlinear network structures. The framework incorporates both supervised and unsupervised
elements (illustrated in Figure 1) to preserve the first-order and second-order similarities among nodes. The supervised
component utilizes Laplacian feature mapping as the objective function for first-order similarity, facilitating the
generation of embeddings that encapsulate local structural characteristics. Conversely, the unsupervised component



LiNing Yuan

Volume 3, Issue 2, Pp 57-62, 2025

58

adapts the L2 reconstruction loss function as the objective for second-order similarity, which allows the embeddings to
capture global structural attributes. The joint optimization of both first-order and second-order similarities significantly
enhances the model's resilience in the context of sparse graphs, ensuring that the resulting embeddings effectively retain
both global and local structural information.

Figure 1 The Framework of SDNE.

The process of generating low-dimensional embeddings using DNGR [13] is primarily comprised of three distinct steps:
(1) the application of a random walk model to capture the structural characteristics of the graph, resulting in the creation
of a co-occurrence probability matrix; (2) the computation of the Positive Pointwise Mutual Information (PPMI) matrix
derived from the co-occurrence probability matrix; and (3) the utilization of the PPMI matrix as input for a Stacked
Denoising Autoencoder (SDAE) to produce low-dimensional embedding representations. In contrast to random walks,
random surfing directly extracts the structural information of the graph, thereby addressing the limitations inherent in
the original sampling methodology. The PPMI matrix effectively preserves the high-order similarity information of the
graph, while the stacked architecture facilitates a gradual reduction in the dimensionality of the hidden layers, thereby
enhancing the capacity of deep learning models to capture complex features. Furthermore, the incorporation of a
denoising strategy contributes to the overall robustness of the model.
DNE-APP [14] employs a semi-supervised stacked autoencoder (SAE) to produce low-dimensional embeddings that
preserve k-order information, which is achieved through a two-step process: (1) the generation of a similarity
aggregation matrix that encapsulates k-order information using the PPMI metric and a k-step transition probability
matrix; and (2) the application of the SAE to reconstruct this similarity aggregation matrix, thereby facilitating the
learning of low-dimensional nonlinear embedding representations. In contrast to SDNE, which is limited to first-order
and second-order similarities, the DNE-APP model is capable of maintaining various k-order similarities. Furthermore,
unlike DNGR, which focuses solely on the reconstruction of high-order similarities, DNE-APP incorporates pairwise
constraints during the reconstruction phase, thereby ensuring that similar nodes are positioned closer together within the
embedding space.
Variational Autoencoders (VAE) [15] serve as generative models that facilitate dimensionality reduction, offering the
benefits of noise tolerance and the ability to learn smooth representations. The Variational Graph Autoencoder (VGAE)
[16], as illustrated in Figure 2, is the first application of VAE for the purpose of acquiring interpretable undirected graph
embedding representations. In this model, the encoder component employs Graph Convolutional Networks (GCN) [17],
while the decoder component utilizes the inner product of the embeddings. The optimization of the VGAE model is
achieved through the minimization of both the reconstruction loss and the variational lower bound. In contrast, the
Linear-VGAE [18], as proposed by Salha et al., substitutes the GCN encoder in VGAE with a straightforward linear
model that is based on the normalized adjacency matrix and does not incorporate an activation function, thereby
simplifying the encoder's complexity. Comparative performance evaluations indicate that this basic linear node
encoding scheme is equally effective as the more complex VGAE model.
VAGE emerged as powerful graph representation learning methods with promising performance on graph analysis
tasks. However, existing methods typically rely on GCN to encode the attributes and topology of the original graph.
This strategy makes it difficult to fully learn high-order neighborhood information, which weakens the capacity to learn
higher-quality representations. Yuan et al. propose the MoVGAE (illustrated in Figure 3) [19] with co-learning of first-
order and high-order neighborhoods. GCN and Multi-order Graph Convolutional Networks (MoGCN) are utilized to
generate the mean and variance for the variational autoencoders. Then, MoVGAE uses the mean and variance to
calculate node representations. Specifically, this approach comprehensively encodes first-order and high-order
information in the graph data.
Graph representation learning models rely on specific task to preserve features, and the generalization of node
representations are limited. Aiming at the above problems, a model Self-VGAE [20] introducing self-supervised
information was proposed in this paper. Firstly, two-layer graph convolutional encoder and node representation inner
product decoder were used to construct a variational graph autoencoder, and the features of the original graph were
extracted. Then, topology and attributes were used to generate self-supervised information, and constrain the generation
of node representations during training.



Graph autoencoders: a survey

Volume 3, Issue 2, Pp 57-62, 2025

59

In contrast to conventional asymmetric models, GALA [21] employs a fully symmetric graph convolutional
autoencoder framework to produce low-dimensional embedding representations of graphs. During the reconstruction of
the input matrix, the Laplacian smoothing executed by the encoder is symmetrically aligned with the Laplacian
sharpening conducted by the decoder. Distinct from existing VGAE methodologies, GALA incorporates a Laplacian
sharpening representation characterized by a spectral radius of 1, which facilitates the decoder's direct reconstruction of
the nodes' feature matrix. In comparison to models that solely utilize Graph Convolutional Network (GCN) encoders,
GALA's symmetric architecture allows for the concurrent utilization of both structural information and node features
throughout the encoding and decoding phases.
On the other hand, ANE [22] employs adversarial autoencoders to generate low-dimensional embeddings that
effectively capture highly nonlinear structural information. Specifically, ANE leverages first-order and second-order
similarities to encapsulate both local and global structures of the graph, thereby ensuring that the generated embeddings
retain a high degree of nonlinearity. The training regimen of the adversarial autoencoder adheres to two primary
criteria: the first is an autoencoder training criterion predicated on reconstruction error, while the second is an
adversarial training criterion aimed at aligning the aggregated posterior distribution of the embedding representation
with a specified prior distribution. Through the implementation of adversarial regularization, ANE addresses the
manifold rupture issue prevalent in the embedding generation process, thereby augmenting the representational capacity
of the low-dimensional embeddings.

Figure 2 The Framework of VGAE.

Figure 3 The Framework of MoVGAE.

3 APPLICATIONS

3.1 Network Reconstruction



LiNing Yuan

Volume 3, Issue 2, Pp 57-62, 2025

60

Network reconstruction entails utilizing learned low-dimensional vector representations of nodes to recreate the
topological structure of the original graph, thereby assessing the capacity of the generated embeddings to preserve
structural information. This process involves predicting the existence of links between nodes based on the inner product
or similarity of their embeddings, and evaluating the model's reconstruction efficacy by calculating the proportion of
true links among the top k pairs of vertices in the original graph. The network reconstruction task is generally
segmented into three phases: (1) generating embedding representations through a graph autoencoder model; (2)
determining the reconstruction proximity of corresponding nodes and ranking them accordingly; and (3) calculating the
proportion of true links among the top k pairs of nodes.

3.2 Node Classification

The objective of node classification is to ascertain the category to which each node belongs, utilizing both the
topological structure of the graph and the features associated with the nodes. In practical graph datasets, complete
labeling may not be achievable; consequently, the labels for a majority of nodes may remain unknown due to various
factors. The node classification task can capitalize on the available labeled nodes and their interconnections to infer the
missing labels. Furthermore, node classification tasks can be categorized into two types: multi-label classification,
where each node is assigned a single category label, and multi-class classification, where nodes may possess multiple
category labels.
The node classification task is typically divided into three steps: (1) generating embedding representations using a graph
autoencoder model; (2) partitioning the labeled dataset into training and testing subsets; and (3) training a classifier on
the training subset and validating the model's performance on the testing subset. Evaluation metrics commonly
employed in node classification tasks include micro-F1 and macro-F1. For multi-class tasks, accuracy aligns with the
micro-F1 value. The prediction of node labels through network structure and node features has extensive applications in
network analysis, allowing for the comparison of the effectiveness of various embedding methods in this context.

3.3 Link Prediction

The link prediction task aims to ascertain whether an edge exists between two nodes or to predict unobserved links
within the graph, thereby evaluating the performance of the generated embeddings in maintaining topological structure.
This task is typically divided into three steps: (1) generating embedding representations using a graph autoencoder
model; (2) labeling the edge information between any two nodes in the dataset and subsequently partitioning the dataset
into training and testing subsets; and (3) training a classifier on the training subset and conducting link prediction
experiments on the testing subset. Evaluation metrics commonly utilized in link prediction tasks include AUC (Area
Under the Curve) and AP (Average Precision). AUC involves setting the threshold just below each positive example,
calculating the recall of the negative class, and averaging the results. Conversely, AP sets the threshold just below each
positive example, calculates the precision of the positive class, and averages the outcomes. Graph autoencoders can
capture the inherent structure of the network, either explicitly or implicitly, to predict potential connections that have
not yet been observed.

3.4 Node Clustering

The clustering task employs an unsupervised methodology to partition the graph into multiple communities, wherein
nodes within the same community exhibit greater similarity. Following the generation of embeddings using the model,
classical techniques such as spectral clustering and k-means are typically applied to cluster the node embeddings.
Clustering tasks generally utilize Normalized Mutual Information (NMI) as an evaluation metric, aiming to cluster the
generated embedding representations such that nodes with similar characteristics are positioned as closely as possible
within the same community.

3.5 Anomaly Detection

The anomaly detection task is designed to identify "abnormal" structures within the graph, which typically encompasses
anomaly node detection, anomaly edge detection, and anomaly change detection. Common methodologies for anomaly
detection include two primary approaches: one involves compressing the original graph and identifying anomalies
within the compressed graph through clustering and outlier detection; the other entails generating node embeddings
using the model and grouping them into k communities, thereby detecting new nodes or edges that do not conform to
existing communities. Anomaly detection tasks typically employ AUC as an evaluation metric. The primary focus of
anomaly detection in graph data is to identify outliers (anomalous points) that significantly deviate from the normal
dataset. Effective embedding representations can delineate normal points from anomalous points through the
establishment of decision boundaries.

3.6 Visualization

The visualization task encompasses dimensionality reduction and the visualization of embeddings to facilitate an
intuitive observation of specific features of the original graph. Visualization tasks are generally conducted on labeled
datasets, wherein nodes with differing labels are represented in distinct colors within a two-dimensional space. Given
that the embeddings retain certain information from the original graph, the visualization outcomes directly reflect that
nodes within the same community in the two-dimensional space exhibit greater similarity. For visualization tasks,
robust embedding representations ensure that similar or proximate nodes are positioned closely together in the two-
dimensional representation, while dissimilar nodes are effectively separated.



Graph autoencoders: a survey

Volume 3, Issue 2, Pp 57-62, 2025

61

4 FUTURE RESEARCH DIRECTIONS

The examination and evaluation of both traditional and innovative graph autoencoder methodologies indicate that the
primary objectives at this juncture involve enhancing the scalability of models to accommodate large-scale and intricate
graph data, innovating modeling techniques, and augmenting the efficacy of downstream tasks.

4.1 Autoencoders for Large-Scale Graph Data

In the context of graph embedding tasks, it is imperative to enhance the computational efficiency of models through the
utilization of distributed computing or unsupervised learning methodologies. However, existing dynamic graph models
frequently fall short in executing graph representation learning tasks when applied to large dynamic graphs
characterized by complex evolutionary information. Dynamic graphs are typically represented as a series of snapshots
or continuous networks with associated timestamps; consequently, an increase in the number of snapshots or
timestamps correlates with heightened complexity in the evolutionary information of the dynamic graph. Thus, two
critical aspects in addressing the challenges posed by large-scale graph autoencoders are the reduction of network
evolution complexity and the enhancement of embedding model performance.

4.2 Task-Specific Embedding Models

The outputs generated by graph autoencoder models are often employed across a variety of tasks, including node
classification, link prediction, and visualization. In contrast to the previously mentioned modeling approaches, task-
specific embedding models concentrate exclusively on a singular task, leveraging information pertinent to that task to
optimize model training. Generally, task-specific embedding models exhibit superior effectiveness for their designated
tasks compared to general embedding models. Consequently, the design of high-performance models tailored for
specific tasks represents a significant avenue for future research.

4.3 Application of Large Model Techniques in Graph Autoencoders

Large models (LLMs) have exhibited formidable capabilities in representation learning and generation within domains
such as natural language processing, and the methodologies derived from these models offer valuable insights for the
advancement of graph autoencoders. Firstly, the exploration of graph-text fusion representation investigates the
integration of LLMs to comprehend textual attribute information, amalgamating it with graph structures to create
multimodal graph autoencoders that enhance the informational richness and interpretability of node representations.
Secondly, research on prompt learning and adaptation centers on the design of graph-related prompts to direct pre-
trained graph models or LLMs in adapting to downstream graph tasks, thereby minimizing fine-tuning expenses and
bolstering few-shot learning capabilities. Thirdly, the domain of graph generation and inference capitalizes on the
robust generative abilities of large models, in conjunction with the structural encoding provided by graph autoencoders,
to formulate more controllable and high-quality graph generation models that satisfy complex constraints, including the
investigation of intricate graph inference tasks supported by large models. Lastly, parameter-efficient fine-tuning
(PEFT) employs techniques such as LoRA and Adapter to large-scale graph models or graph-text fusion models,
thereby diminishing the resource requirements for training and deployment.

5 CONCLUSION

This article offers an extensive review of the existing literature on graph autoencoders, delineating pertinent definitions
associated with this topic and systematically examining the fundamental strategies and theoretical frameworks of
current models. In the section dedicated to applications, it discusses prevalent machine learning tasks, including node
classification and link prediction, while evaluating the performance of various models. Ultimately, the article suggests
three potential research avenues within the domain of graph autoencoders, focusing on aspects of graph data, modeling
strategies, and application contexts.

COMPETING INTERESTS

The authors have no relevant financial or non-financial interests to disclose.

FUNDING

This work was supported by the Project for Enhancing Young and Middle-aged Teacher's Research Basis Ability in
Colleges of Guangxi under Grant 2024KY0904.

REFERENCES

[1] Balasubramaniam K, Vidhya S, Jayapandian N, et al. Social network user profiling with multilayer semantic
modeling using ego network. International Journal of Information Technology and Web Engineering (IJITWE),
2022, 17(1): 1-14.

[2] Troncoso F, Weber R. A novel approach to detect associations in criminal networks. Decision Support Systems,
2020, 128: 113159.



LiNing Yuan

Volume 3, Issue 2, Pp 57-62, 2025

62

[3] Guo S N, Lin Y F, Feng N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow
forecasting. Proceedings of the 9th AAAI Symposium on Educational Advances in Artificial Intelligence,
Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 922-929.

[4] Bhagat S, Cormode G, Muthukrishnan S. Node classification in social networks. Aggarwal C C .Social Network
Data Analytics. Berlin, Heidelberg: Springer, 2011: 115-148.

[5] Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks. Journal of the American Society
for Information Science and Technology, 2007, 58(7): 1019-1031.

[6] Ding C H Q, He X F, Zha H Y, et al. A min-max cut algorithm for graph partitioning and data clustering.
Proceedings of the 2001 IEEE International Conference on Data Mining, San Jose, Nov 29-Dec 2, 2001.
Washington: IEEE Computer Society, 2001: 107-114.

[7] Vander M L, Hinton G. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9(11): 2579-
2605.

[8] Qiu J Z, Tang J, Ma H, et al. DeepInf: social influence prediction with deep learning. Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, Aug 19-23, 2018.
New York: ACM , 2018: 2110-2119.

[9] Silveira T, Zhang M, Lin X, et al. How good your recommender system is? A survey on evaluations in
recommendation. International Journal of Machine Learning and Cybernetics, 2019, 10(5): 813-831.

[10] Bourlard H, Kamp Y. Auto-association by multilayer perceptrons and singular value decomposition. Biological
Cybernetics, 1988, 59(4): 291-294.

[11] Tian F, Gao B, Cui Q, et al. Learning deep representations for graph clustering. Proceedings of the 28th AAAI
Conference on Artificial Intelligence, Québec City, Jul 27 -31, 2014. Menlo Park: AAAI, 2014: 1293-1299.

[12] Wang D X, Cui P, Zhu W W. Structural deep network embedding. Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York:
ACM, 2016: 1225-1234.

[13] Cao S S, Lu W, Xu Q K. Deep neural networks for learning graph representations. Proceedings of the 30th AAAI
Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI, 2016: 1145-1152.

[14] Shen X, Chung F L. Deep network embedding with aggregated proximity preserving. Proceedings of the 2017
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, Sydney, Jul 31
– Aug 3, 2017. New York: ACM, 2017: 40-43.

[15] Kingma D P, Welling M. Auto-encoding variational Bayes. arXiv:1312.6114, 2013.
[16] Kipf T N, Welling M. Variational graph auto-encoders. arXiv:1611.07308, 2016.
[17] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. arXiv:1609.02907, 2016.
[18] Salha G, Hennequin R, Vazirgiannis M. Keep it simple: graph autoencoders without graph convolutional networks.

arXiv:1910.00942, 2019.
[19] Yuan L, Jiang P, Wen Z, et al. Improving Variational Graph Autoencoders With Multi-Order Graph Convolutions.

IEEE Access, 2024, 12: 46919-46929. DOI:10.1109/ACCESS.2024.3380012.
[20] Yuan L, Wen Z, Feng W, et al. Graph Representation Learning Enhanced by Self-supervised Information.

Guangxi Sciences, 2024, 31(2): 323-334.
[21] Park J, Lee M, Chang H J, et al. Symmetric graph convolutional autoencoder for unsupervised graph

representation learning. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul,
Oct 27 – Nov 2, 2019. Piscataway: IEEE, 2019: 6518-6527.

[22] Xiao Y, Xiao D, Hu B B, et al. ANE: network embedding via adversarial autoencoders. Proceedings of the 2018
IEEE International Conference on Big Data and Smart Computing, Shanghai, Jan 15-17, 2018. Washington: IEEE
Computer Society, 2018: 66-73.


