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Abstract: As the core unit of the new energy grid, the operational reliability of the wind power system is directly
related to the stability and power generation efficiency of the power grid, so it is urgent to improve its ability to
accurately predict faults. Aiming at the complex timing fault characteristics of wind power generation systems, a
multi-feature fusion operation fault prediction method based on LSTM is proposed. The wind farm SCADA system
collects the operation data for preprocessing, screens the highly correlated features by the Pearson correlation
coefficient method, and constructs a multi-feature input LSTM fault prediction model to improve the accuracy of wind
power generation system operation fault prediction. Experimental results show that compared with the single feature
model, the multi-feature fusion strategy can significantly improve the comprehensive performance of the prediction
model, and the fault warning accuracy and F1 score are increased by 12.78% and 12.04% respectively.
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1 INTRODUCTION

As the core support unit of the new energy grid, the operational reliability of the wind power generation system is
directly related to the safety, stability and energy conversion efficiency of the power system. However, wind power
equipment has been serving in complex natural environments for a long time, and the core components are easily
induced by the coupling effect of wind speed, temperature and other factors, resulting in downtime losses and a surge in
operation and maintenance costs. The traditional fault prediction method based on a single parameter is difficult to
adapt to the temporal dynamic characteristics of multivariate coupling of wind power generation systems, and there are
problems such as prediction lag and insufficient accuracy.
With the rapid development of deep learning algorithms, especially the modeling ability of long short-term memory
(LSTM) for time series dependencies, it provides a new path for wind power system failure prediction. Therefore, this
study proposes a fault prediction method for wind power generation system based on LSTM, which improves the
accuracy and efficiency of fault prediction and ensures the reliable operation of new energy power grids by mining the
correlation characteristics of multi-dimensional operation data.

2 FAULT PREDICTION OF WIND POWER SYSTEM

2.1 Wind Power System Fault Data Collection

The geographical dispersion of wind farm clusters has significantly increased the technical complexity of remote
management of wind power systems, and the monitoring and data acquisition system (SCADA) has become the core
infrastructure for onshore and offshore wind farms to realize digital and intelligent operation and maintenance,
supporting remote status monitoring of wind turbines, The operation parameter regulation and full data collection can
continuously generate SCADA data with multi-dimensional timing characteristics, covering multi-dimensional
monitoring parameters such as power load dynamics, unit power generation efficiency, and fault event logs.
As a wind turbine data acquisition unit, the SCADA system has a wide range of monitoring data, mainly including wind
speed, generator speed and other speed data; electrical data such as voltage, current, active power, and reactive power;
temperature data such as generator stator and rotor temperature, engine room motor temperature, and ambient
temperature; and wind direction, yaw angle, torque and other angle data. Table 1 shows the main parameters of the
SCADA system monitoring variables.

Table 1 Main Monitoring Variables and Units of SCADA System
Parameter Unit Parameter Unit

Wind speed m/s Wind turbine yaw state /
Wind direction ° Hub temperature ℃
Active power KW Tower bottom temperature ℃

Reactive power KVar 10 min average turbulence intensity m/s
Wind wheel speed rpm Turbulence coefficient m/s
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Generator speed rpm Average torque N·m
Generator bearing

inner Ring temperature ℃ Pitch control cabinet temperature ℃

Yaw speed m/s Temperature of the outer ring
of the power generation bearing ℃

In summary, the SCADA data generated in the operation of the wind power generation system has obvious
spatio-temporal correlation laws, and the current state is restricted by the historical operation state, and the LSTM
network model can effectively model long-term dependencies due to its unique gating mechanism and state memory
ability.

2.2 Overview of Fault Prediction Methods

Fault prediction and diagnosis in wind power systems is key to ensuring grid stability and falls into three categories:
statistical learning, machine learning, and deep learning methods.
Statistical learning methods mainly rely on rule-based expert systems and traditional statistical analysis methods,
including the ARIMA model[1], exponential smoothing algorithm[2]. Because this traditional model is built on the
basis of time series stability, and the operation data of wind power generation system shows strong time-varying and
nonlinearity dynamic characteristics, its stability assumption is fundamentally in conflict with the internal law of the
data. Common machine learning methods in power system fault prediction mainly include decision trees[3], support
vector machines[4], random forest[5] etc. These methods can extract the characteristics of power system data such as
high dimensionality, nonlinearity and complex distribution, but wind power faults are usually induced by the coupling
of multiple physical parameters, it is difficult to fully describe the fault evolution law of single-dimensional features.
Therefore, it is necessary to manually construct feature engineering, which makes it difficult to predict the fault of wind
power generation system through machine learning methods. In contrast, deep learning methods can automatically
extract complex features from massive data and capture deep correlations between data without manual intervention[6].
The most commonly used deep learning methods are LSTM[7], gated recurrent unit(GRU)[8], convolutional neural
networks(CNN)[9], multi-layer perceptron(MLP)[10] etc.
Given that faults in wind power systems exhibit distinct long-term dynamic evolution characteristics, among several
common deep learning algorithms, GRU simplifies its gating mechanism, leading to inadequate depiction of the
complex dependencies inherent in wind power faults[11]. MLP as a static feedforward network, lacks the capability to
address the temporal evolution characteristics of such faults. CNN excels in extracting spatial features but is not tailored
for temporal dynamics. In contrast, the gating mechanism of LSTM can effectively mitigate the gradient vanishing issue
in long sequences—a limitation of traditional recurrent neural networks—while accurately capturing cross-time-step
dependencies. Moreover, it can directly incorporate temporal information of multi-dimensional features, thereby
fulfilling the prediction needs of multi-feature fusion. Accordingly, this study presents an LSTM-based multi-feature
fusion fault prediction method for wind power systems.

3 FAILURE PREDICTION MODEL OFWIND POWER SYSTEM BASED ON LSTM

3.1 Data Processing and Feature Analysis

Data in wind power systems primarily originates from SCADA systems, characterized by large volume and redundancy.
This necessitates data cleaning to remove missing values and outliers, normalization and standardization to eliminate
scale differences among distinct features, and feature selection to screen out features that significantly impact the
operational fault prediction of wind power systems. Such processes remove redundant or irrelevant features, thereby
reducing computational load and enhancing model training efficiency.
Based on this, the Pearson correlation coefficient method was used to screen the characteristics of SCADA data and
analyze the correlation of the relevant factor sets. The Pearson correlation coefficient, a standardized form of covariance,
is a statistic used to measure the strength and direction of linear relationships between variables, independent of variable
units and scales, and is defined as follows:
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where iX sum iY is the first observation of the two variables i ; X and Y are the average of X the sums Y ,

respectively. The value range of the Pearson correlation coefficient is  1,1 as follows, 0r  indicating the existence
of a positive correlation and 0r  indicating the existence of a negative correlation, and its absolute value is used to
characterize the degree of correlation. r The degree of correlation is shown in Table 2.

Table 2 Pearson Correlation Determination Table
Correlation degree Irrelevant or Weak Moderately Strongly Extremely
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extremely weak strong
Absolute value of

correlation coefficient 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1

3.2 LSTM Model Design

Long short-term memory networks are developed from recurrent neural networks (RNN), which introduce four parts:
memory cells, input gates, forgetting gates, and output gates to regulate the flow of information, which can not only
overcome the problems of gradient explosion and gradient disappearance in RNN processing long-term dependencies,
but also capture longer dependencies, which is more suitable for processing and predicting important events with long
intervals in time series[12]. The cell state is the core component of LSTM, which can retain important historical
information and be applied to the prediction task of the current moment, the input gate determines whether to write
some or all of the current input information to the memory cell, the forgetting gate can selectively forget outdated or
irrelevant historical information, ensuring that the state in the memory cell is always relevant to the current task, and the
output gate is used to decide which information in the memory cell will be output to the subsequent network layer. This
mechanism enables LSTMs to selectively expose information in memory cells according to task needs, thereby
effectively regulating the transmission of information flow.
In this study, highly correlated feature data screened via Pearson correlation serve as input to the LSTM network, with
wind power system fault results as the model output. Its structure is shown in Figure 1.

Figure 1 LSTM Network Structure Diagram

The forward propagation process of LSTM network is as follows:

Firstly, the forgetting gate screens  the information to be retained or discarded in the 1tC  cell state through the

gating mechanism, and outputs the gating vector that matches the cell state tx using the current input 1th  and the

hidden state of the previous moment tf . ( )x Used to press inputs into a  0,1
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functions, 0 represents complete discarding of the corresponding dimension information, and 1 represents complete
retention. The formula is:
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Secondly, the input gate generates a gating vector through tx function processing 1th  and sum ti , identifies the
dimension that needs to be updated in the cell state, and tanh performs a nonlinear transformation of the same input

layer to generate a candidate cell state tC . Represents potential updates, tanh( )x is a hyperbolic tangent function that
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Then, the old cell state 1tC  is retained in proportion tf by the forgetting gate, and then the part screened tC ti by the
input gate with the candidate state is updated through gated weighted fusion to obtain the new cell state at the current

moment tC . The mathematical expression is:

1t t t t tC f C i C   (7)

Finally, the output gate tx generates a gating vector 1th  based on and through the gating mechanism to , identifies

tC the dimension to be output in the updated cell state, and tC multiplies tanh it by element after layer mapping to .

Get the current moment hidden state th . The formula is as follows:

1[ ) ]t o t t oo W h x b  ( , (8)

tanh( )t t th o C (9)

fW , iW , cW , oW is the corresponding parameter matrix, fb , ib , cb , ob is the bias vector.
Since multi-layer and hierarchical architectures are more efficient than shallow models in feature representation, and
can extract abstract features of time series data by adding additional layers, the sequence output of a single-layer LSTM
is widely used to deal with sequence prediction problems as the input of another layer of LSTM.

3.3 Model Evaluation

For the operation fault prediction model of wind power generation system based on LSTM, the performance evaluation
needs to be evaluated to reveal the defects of the model after training. The fault prediction of wind power generation
system is a binary classification problem, and there will be the following four typical judgment results in the prediction
process: actual fault and predicted fault, true positive (TP), actual fault but predicted non-fault, is a false negative class
(FN), which is actually a non-fault but is predicted to be a failure, which is called a false positive class (FP), which is
actually non-fault and predicted to be non-fault, is a true negative class (TN), in order to quantify the prediction
efficiency of the LSTM model on the fault state of the wind power generation system, the following parameters are
used as the evaluation indexes.
(1) Accuracy means that the model predicts the correct ratio. The expression looks like this:

TP TNAccuracy
TP TN FP FN




  
(10)

(2) Precision is used to measure the proportion of actual failures predicted by the model as failure samples. The
expression looks like this:

TPPrecision
TP FP




(11)

(3) Recall is used to describe the model's ability to capture fault samples, that is, the proportion of correctly predicted
fault samples to actual fault samples. The expression looks like this:

TPRecall
TP FN




(12)

(4) F1 score is an indicator that comprehensively considers accuracy and recall. The expression for the score is as
follows:

2 Precision RecallF1 score
Precision Recall





(13)

In addition, the loss function is also a core component in machine learning and deep learning model training, which can
be used to measure the difference between the predicted results and the actual results of the model, and the loss function
of binary cross-entropy is suitable for the binary classification problem of predicting failure states. Therefore, in this
study, the cross-entropy function is used as the loss function to adjust the parameter combination of the LSTM model to
make the prediction results as close to the actual results as possible.
The mathematical expression of the cross-entropy function is:

1

1 ˆ ˆ[ ln (1 ) ln(1 )]N
i i i ii

Loss y y y y
N 

     (14)

where represents N the number of samples, iy represents the actual value, and
ˆiy represents the predicted value.

Through the above indicators, the performance shortcomings of the LSTM model in the fault prediction of wind power
generation system can be systematically evaluated, and a clear direction can be provided for subsequent model
optimization.
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4 EXPERIMENT ANALYSIS

4.1 Dataset Processing

The dataset used in this study is derived from the operation data of an onshore wind farm from February 2022 to
January 2023, with a time interval of 1 minute, to test the effectiveness of the LSTM-based wind power generation
system operation failure prediction method proposed in this paper.
Firstly, after data cleaning of the wind power system operation dataset, a total of 40,300 historical SCADA data were
extracted, and the training set, test set and verification set were divided according to the ratio of 70%, 15% and 15%, of
which the training set had a total of 28,208 data, the test set had a total of 6,046 data, and the verification set had a total
of 6,046 data.
Then, 17 monitoring parameters of the SCADA system including fault state are extracted, and the SCADA data of the
wind power generation system obtained by Pearson correlation coefficient method is used to screen the characteristics.

Figure 2 Pearson Correlation Coefficient Heat Map

The correlation coefficient heat map results are shown in Figure 2. It shows that there is a strong correlation between
active power and system operation failure, with a correlation coefficient of 0.85, and the correlation between average
torque, wind speed and reactive power and system operation failure is between 0.6 and 0.8, and there is a strong
correlation.
Therefore, in this study, four characteristics of active power, average torque, wind speed and reactive power are selected
as the inputs of the LSTM model for wind power system failure prediction, and the fault prediction is carried out by
fusing multiple feature data to improve the accuracy of wind power system failure prediction.

4.2 Model Parameter Optimization and Performance Evaluation

In order to effectively prevent overfitting and improve the generalization ability of the model during model training, this
study uses the method of cross-validation to determine the optimal hyperparameters, including learning rate, batch size
and number of LSTM layers. The expression looks like this:

( ) ( )

1

1 ˆ( , )
K

k k

k

CV L y y
K 
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wherein,
( )ˆ ky is the k prediction result of the folding verification set;

( )ky is the actual value, and the final result is
the K average loss value of the discount verification.
In the process of model training and optimization, the optimal combination of parameters is selected by cross-validation
method, and the advantages and disadvantages of the parameters are evaluated by the loss function curve.
As shown in Figure 3, it is a schematic diagram of the loss function of the LSTM model and the optimization process of
the model accuracy.
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Figure 3 Schematic Diagram of LSTM Model Training Results

As shown in Figure 3, the training process of the LSTM model shows typical convergence characteristics, the training
loss curve decreases rapidly in the first 10 rounds, and the verification loss curve decreases synchronously and stabilizes
after about 50 rounds, and the two finally converge in a similar low value range, indicating that the model does not have
obvious overfitting. In addition, the training accuracy and verification accuracy are simultaneously increased to more
than 0.95, and the verification accuracy is always slightly higher than the training accuracy, indicating that the model
has good generalization ability. The model training results show that the current set time step, number of LSTM units,
dropout rate and learning rate constitute the optimal combination of hyperparameters, so that the model can maximize
the failure prediction performance without overfitting.
As shown in Figure 4, the confusion matrix of the test set and the verification set obtained after using the LSTM model
for wind power system operation fault prediction.

Figure 4 Confusion Matrix

In addition, the accuracy, recall, and F1 values can be further calculated by the confusion matrix, as shown in Table 3,
which shows the prediction results of the LSTM model for wind power system operation failures.

Table 3 Failure Prediction Results of LSTM Model
Data subsets Accuracy Precision Recall F1 Score

Validation set 0.9567 0.8896 0.9308 0.9097
Test set 0.9583 0.9045 0.9210 0.9127

As shown in Table 3, the LSTM-based wind power fault prediction model performed well in both the validation set and
the test set, with an overall accuracy of 95.67% and 95.83%, respectively, and in terms of the key indicators to measure
the reliability of fault prediction, the accuracy of the model reached 90.45% in the test set, the recall rate reached
92.10%, both exceeded the 90% threshold, and the F1 score reached 91.27%, which was close to the optimal theoretical
value. On the whole, the performance of the model in the verification set and the test set is consistent, indicating that the
model has good generalization ability, not only has high accuracy, but also balances the risk of fault false alarm and
false alarm, and has significant advantages in engineering practice.

4.3 Analysis and Discussion of Results

In order to explore the influence of multi-feature fusion on the fault prediction ability of LSTM model, this study
experimentally compares the prediction performance of single operating parameters such as wind speed, active power,
reactive power, and average torque with multi-feature fusion strategy, and the evaluation indicators cover accuracy,
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precision, recall rate and F1 score. The specific comparison results are shown in Table 4.

Table 4 Comparison of fault predictions for different feature inputs
Enter the characteristics Accuracy Precision Recall F1 Score

Single feature
forecast

Wind Speed 0.9421 0.880 0.8741 0.8772
Active Power 0.9535 0.903 0.9007 0.9016

Reactive Power 0.8841 0.7334 0.8007 0.7656
Average Torque 0.9386 0.875 0.8636 0.8694

Multi-feature fusion This study 0.9562 0.882 0.9413 0.9104
Performance improvement ratio 2.86% 12.78% 11.22% 12.04%

As shown in Table 4, the active power is the best in a single feature with an accuracy rate of 95.35%, but its recall rate
is only 90.07%, and the accuracy of wind speed and reactive power is close, but the accuracy and F1 score of reactive
power are significantly lower, and the average torque index is lower than the active power. Compared with the
prediction results of single feature failure, the accuracy of the multi-feature fusion strategy proposed in this study has
been improved to 95.62%, the recall rate has jumped to 94.13%, the risk of missed judgment has been significantly
reduced, and the F1 score has reached 91.04%, of which the accuracy and F1 score performance have been significantly
improved, which are 12.78% and 12.04%, respectively.
In summary, the multi-feature fusion strategy can fully mine the coupling correlation of wind speed, power, torque and
other parameters, and strengthen the recognition ability of LSTM for fault timing patterns through multi-dimensional
information complementarity, avoiding the loss of information caused by the limitations of a single feature due to the
limitations of physical mechanisms, thus effectively improving the accuracy of fault prediction. Therefore, it is difficult
to fully characterize the complex evolution of wind power system faults due to the one-sided nature of physical
correlation, while the multi-feature fusion strategy can significantly improve the comprehensive performance of the
prediction model through cross-dimensional information collaboration, verify the key role of feature engineering in
wind power fault prediction, and provide a direction for subsequent model optimization.

5 CONCLUSION

In this study, based on the operation data of the SCADA system, the highly correlated features were screened by the
Pearson correlation coefficient method to construct an LSTM model with multi-feature input. In the future, the dynamic
update mechanism of the model can be further constructed to optimize the LSTM architecture, enhance the long-time
series dependency characterization ability and computing efficiency, and help the intelligent operation and maintenance
system of wind power generation system to be accurately upgraded.
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