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Abstract: In multi-hop question answering (MHQA) tasks, existing methods typically integrate multiple reasoning
paths from knowledge graphs (KGs) and chains of thought (CoTs). Early KG-enhanced methods primarily focus on
obtaining relevant knowledge but fail to consider the multi-dimensional quality of reasoning paths. Subsequent works
filter paths but treat all retained paths as equally important without further differentiation. Although some recent works
attempt to rank paths by quality, they only provide a relative order without quantifying the actual quality differences
between paths. To address these limitations, we propose a Multi-dimensional Quality-aware Path Fusion (MQPF)
framework. MQPF introduces a multi-dimensional evaluation mechanism that quantifies path quality from semantic,
structural, and outcome-based dimensions. Based on the overall scores, MQPF first filters out low-quality paths to
reduce noise and then assigns adaptive weights to the remaining paths according to their scores. This method effectively
removes unreliable information and enhances the utilization of trustworthy information during reasoning. Experiments
show that MQPF performs comparably to baselines on multiple datasets. Moreover, as a model-agnostic module, it can
be used as a plug-and-play module to enhance the performance of existing multi-path reasoning methods.
Keywords: Question answering; Large language model; Knowledge graph

1 INTRODUCTION

Effective multi-hop question answering (MHQA) requires combining different reasoning paths to produce accurate
answers [1-3]. This involves two key components: knowledge graph (KG) subgraphs that provide structured knowledge
and chains of thought (CoTs) that support step-by-step logical reasoning. By integrating both types of reasoning paths,
MHQA systems can achieve broader coverage of relevant information while maintaining robust reasoning capabilities
[4,5].
Early KG-enhanced large language model (LLM) reasoning methods construct reasoning paths by retrieving or
traversing KGs to improve reasoning accuracy and interpretability [3,6-8]. However, these methods only focus on
obtaining relevant knowledge, overlooking the importance of evaluating the quality of reasoning paths across multiple
dimensions. As a result, low-quality paths that appear highly relevant may introduce noise and biases into the
subsequent reasoning steps. Subsequent works try to filter paths by majority voting or top-n sampling [9-12]. However,
when generating final answers, they treat all retained paths as equally important, overlooking the quality differences
between them. This equal treatment makes it hard for the LLM to effectively leverage the most critical information,
especially when paths contain different answers. Some later works attempt to rank retained paths by quality [13-16], but
they only establish a relative ordering. These methods cannot quantify the actual quality differences between paths,
lacking a mechanism to reflect how much better one path is than another. As a result, two key challenges remain: (1)
how to measure multiple quality aspects of reasoning paths, and (2) how to combine these evaluations to best guide path
integration and final answer generation.
To address these challenges, we propose a Multi-dimensional Quality-aware Path Fusion (MQPF) framework. Our
method begins with a multi-dimensional evaluation framework with three dimensions: Semantic Quality (S LLM): A
powerful LLM is prompted as a reasoning quality evaluator to score paths based on logical coherence and factual
correctness; Structural Quality (SS truct): Evaluates the structural effectiveness of paths using subgraph density (for KG
paths), reasoning path length (for CoT paths), and question-path relevance; Result Quality (SRM): A reward model
fine-tuned on human preferences evaluates the reliability of answers from each path. Each path receives a composite
score based on these three dimensions. Based on this score, MQPF first filters out low-quality paths by applying a
threshold. Next, it assigns adaptive weights to valid paths, making higher-quality paths have greater influence for
answer generation. Finally, it makes the LLM prioritize high-weight paths by promoting. This integrated method
provides multi-dimensional quality evaluation for hybrid reasoning paths and employs a quality-adaptive fusion strategy
that translates the scores into influence weights during answer generation. In summary, our contributions are:
 We propose a comprehensive multi-dimensional quality evaluation framework for evaluating KG subgraphs and

CoT reasoning paths in MHQA.
 We introduce a quality-driven fusion mechanism that assigns weights based on path quality to guide path fusion

and answer generation.
 Method Experiments show that our method outperforms all baselines and can serve as a plug-and-play module to

enhance existing multi-path reasoning methods.
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2 RELATED WORKS

Early methods that enhance LLM reasoning with knowledge graphs (KGs) typically retrieve or traverse KGs to obtain
reasoning paths or subgraphs. RoG proposes a planning-search-reasoning framework that retrieves paths from KGs to
guide LLM reasoning[3]. GNN-RAG retrieves candidate answers from KG subgraphs and extracts the shortest paths
between question entities and answer candidates as reasoning paths[6]. SubgraphRAG retrieves relevant triples as
subgraphs to generate accurate and interpretable answers[7]. GraphReader uses an LLM to explore the KG and
dynamically updates a notebook to record relevant information[8]. However, these methods only focus on retrieving
relevant knowledge like reasoning paths and KG subgraphs without considering their quality across multiple
dimensions. As a result, low-quality paths that appear highly relevant may lead to wrong final answers.
Subsequent works try to filter paths by majority voting or top-n sampling. Self-consistency CoT first generates multiple
reasoning paths and answers and then selects the most consistent one via majority voting[9]. RoK uses CoT to expand
the query and find more related entities[10]. It then builds a subgraph of the KG by matching paths between these
entities and finally filters the top-n reasoning paths from this subgraph. Forest-of-Thought maintains multiple reasoning
trees for parallel reasoning and applies consensus voting to determine the final answer[11]. ARG-KBQA performs
multi-hop beam search over the KGs and converts the top-n reasoning paths into logical forms to enhance LLM
reasoning[12]. However, these methods treat all retained paths as equally important during answer generation without
further differentiation. This uniform treatment makes it difficult for the LLM to effectively leverage the most reliable
information.
Some later works attempt to rank the retained paths by quality. AdaPCR uses a dense retriever to fetch candidate
passages and performs context-aware reranking by concatenating each passage with the question to form a new
query[13]. PromptRank uses an LLM to compute the generation probability of a question given a path as a relevance
score, which is then used to rank the paths[14]. RAGtifier employs a Pinecone retriever and a BGE reranker to improve
retrieval quality[15]. AttnRank finds that LLMs pay more attention to the documents at the beginning and the end[16],
so it places the most relevant documents in these high-attention positions. While these methods order paths by
relevance, they do not quantify the actual quality differences between paths, making it difficult to assess how much
better one path is compared to another.

3 METHOD

To address the issue that multi-path information is not well utilized in multi-hop QA tasks, we propose a
multi-dimensional quality assessment framework and a path filtering and weighted fusion mechanism. Specifically, we
first generate multiple reasoning paths based on the question (including structured KG paths and textual CoTs), and
then evaluate these paths from semantic, structural, and outcome-based dimensions. Based on the overall score of the
path, we filter out low-quality paths and assign weights to the remaining valid paths to guide the LLM in generating the
final answer. The overall framework is shown in Figure 1.

3.1 Multi-Dimensional Quality Assessment Framework

To effectively capture the quality differences among various reasoning paths, we propose a multi-dimensional quality
assessment framework that quantifies the quality of reasoning paths from three perspectives: semantic, structural, and
outcome-based dimensions. The goal of this framework is to assess the overall quality of each reasoning path and assign
it an overall score. These scores are then used in the next step to weight and merge the reasoning paths.
3.1.1 Semantic quality
Semantic quality assessment measures whether a reasoning path is logically consistent and factually accurate. We use
GPT-4, a large language model with strong reasoning and prompting capabilities, to evaluate each reasoning path
through structured prompts. The prompt template is shown in Figure 2.
To improve scoring consistency, we evaluate each reasoning path three separate times and take the average as the
semantic quality score (SLLM). The result is considered valid only when the standard deviation of the three scores is
below 0.5.

Figure 1 The Overview of MQPF. (a) Multi-dimensional Quality Assessment Framework quantifies the quality of
reasoning paths from semantic, structural, and outcome-based dimensions. (b) Multi-path Filtering and Weighted
Fusion Mechanism contains 3 parts:① Path Filtering,②Weight Assignment, and③ Final Answer Generation.
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Figure 2 Prompt Template for Semantic Quality Assessment

3.1.2 Structural quality
Structural quality assessment focuses on evaluating the effectiveness of a reasoning path’s structure. Paths that are more
compact and contain higher information density receive higher scores. Considering the structural differences among
path types, we designed separate evaluation strategies for structured paths (KG subgraphs) and textual paths (CoTs).
Structured Paths The structural quality of this type of path consists of two components: (1) Graph Density, which
measures the connectivity and informational richness between nodes to avoid isolated or sparse paths; (2) Semantic
Relevance between the path and the question, where higher relevance leads to a higher score. For the former, we use the
number of relations and entities in the structured path to calculate it; for the latter, we convert the structured path into a
sequence of triples and encode it into vectors. We then measure its relevance to the question embedding by calculating
the cosine similarity between them. For a structured path pi(r, e) and question Q, the structural quality score Sstruct is:

������� = ���(�)
���(�)

∙ �����������(�, ��) (1)
where r are the relationship edges and e are the entity nodes in the path. The correlation function calculates the
relevance between question Q and reasoning path pi with cosine similarity.
Textual Paths The scoring criteria for this type of path include length and relevance to the question. Although
techniques like CoT improve the interpretability and correctness of the reasoning process, they often lead LLMs to
produce unnecessarily long and redundant steps [17,18]. Therefore, we link the structural score of textual paths to their
length. Paths that are more concise and information-dense receive higher scores. For a textual reasoning path pi, the
structural quality score is:

������� = �−�⋅���(��) ∙ �����������(�, ��) (2)
where η is a hyperparameter that controls how quickly the score decreases as the path gets longer. The correlation
function measures the relevance between question Q and reasoning path pi with cosine similarity.
3.1.3 Outcome-based quality
Outcome-based quality evaluates whether the final answer from a reasoning path aligns with human preferences and
factual standards. We use an outcome reward model (ORM) named SkyworkRM-Llama3.1-8B, which has been
fine-tuned on human preference data, to assess each reasoning path. Since this reward model can only evaluate textual
inputs, we first convert structured paths into a textual sequence of connected triplets. The textual path is then fed into
the ORM to obtain an outcome-based quality score SRM.
3.1.4 Overall score
The overall score Si for each reasoning path pi is computed by a weighted combination of scores from semantic (SLLM),
structural (Sstruct), and outcome-based dimensions (SRM).

��​ = � ∙ ���� + � ∙ ������� + � ∙ ��� (3)
where α, β, and γ are the weight coefficients assigned to the semantic, structural, and outcome-based dimensions. They
are used to keep each type of score within the same range, so the scores from each dimension can be considered equally
and comprehensively when calculating the overall score. This overall score reflects the comprehensive quality of the
path across multiple aspects and serves as the basis for weighted integration in the subsequent path fusion stage.

3.2 Multi-path Filtering and Weighted Fusion Mechanism

After obtaining overall scores for multiple reasoning paths, we propose a score-based multi-path filtering and weighted
fusion mechanism to enhance the accuracy of the final answer. This mechanism consists of three parts: path filtering,
weight assignment, and final answer generation. It is designed to select high-quality reasoning paths, dynamically
assign fusion weights based on their scores, and ultimately guide LLMs to generate the final answer through prompts.
3.2.1 Path filtering
To reduce the influence of redundant and erroneous information in the subsequent fusion stage, we apply a
threshold-based filtering strategy to remove low-quality reasoning paths. Specifically, a threshold θ is set, and all paths
satisfying S ≥ θ are retained to form a valid path set pvalid.

������ = ��|�� ≥ � (4)
The set of valid paths pvalidwill then be assigned weights based on their scores in the next step.
3.2.2 Weight assignment
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To better distinguish the quality differences among paths in the valid set pvalid, we assign each path a weight based on its
score Si. Paths with higher scores receive correspondingly greater weights, and larger score gaps result in more distinct
differences in weight allocation. Specifically, we use a Softmax function with a temperature parameter T to compute the
weights. For a path pi in pvalid, its weight wi is:

�� = �
��
�

��∈������∙�
��
�

(5)

where the temperature parameter T is used to control the concentration of the weight distribution, making the weighting
more sensitive to variations in the scores. The weights wi will be used in the subsequent fusion of reasoning paths and
final answer generation.
3.2.3 Final answer generation
To effectively incorporate the weighted multi-path information into the LLMs for generating the final answer, we
design a prompt template. This template explicitly indicates each reasoning path along with its assigned weight, making
the LLMs prioritize information from higher-weighted paths. The detailed prompt template is shown in Figure 3. By
explicitly embedding the paths and their weights into the input context, the template makes the LLMs recognize quality
differences among reasoning paths to achieve weight-based integration and reasoning. This method enhances the
accuracy and reliability of the final answer.

Figure 3 Prompt Template for Final Answer Generation

4 EXPERIMENTS

4.1 Experiment Setup

4.1.1 Datasets
Following previous works [3,19,20], we conduct experiments on two datasets, WebQuestionSP (WebQSP) and
Complex WebQuestions (CWQ) [21, 22]. The statistics of the datasets are given in Table 1. We follow previous works
(Luo et al., 2024a) to use the same train and test splits for fair comparison. The questions in WebQSP are 1-hop or
2-hop, and the questions in CWQ are 2-4 hops. The two datasets test the model’s ability to understand and answer
questions with multiple facts and reasoning steps. The KG for both datasets is Freebase [23].

Table 1 Statistics of Datasets
Dataset #Train #Test Max #hop
WebQSP 2826 1628 2
CWQ 27639 3531 4

4.1.2 Baselines
We compare MQPF with 13 baselines grouped into 3 categories: (1) LLM only, (2) Multi-path LLM, (3) KG LLM.
(1) LLM-only methods use only LLMs for reasoning without other enhancement methods.
Qwen2-7B is one of a series of LLMs developed by the Alibaba Cloud Tongyi Qianwen team, with a parameter size of
7 billion[24].
Llama-2-7B is one of the Llama 2 series of LLMs developed by Meta AI, with a parameter size of 7 billion[25].
Llama-3.1-8B is one of the Llama 3 series of LLMs developed by Meta AI, with a parameter size of 8 billion[26].
(2) Multi-path+LLM methods prompt LLMs to generate multiple KG paths and CoTs and then generate the final
answers. The reasoning LLMs for this kind of baselines are Llama-2-7B and Llama-3.1-8B.
(3) KG+LLM methods use KGs to enhance LLM reasoning.
G-Retriever retrieves the relevant nodes and edges, then constructs the relevant subgraph using the bonus Steiner tree
method[27].
GRAG retrieves text subgraphs and performs soft pruning to identify relevant subgraph structures effectively, and
proposes a new cue strategy[28].
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SubgraphRAG generates accurate and explainable answers by efficiently retrieving relevant subgraphs from KGs and
leveraging LLMs for reasoning[7].
RoG proposes a planning-search-reasoning framework, which retrieves reasoning paths from KGs to guide LLMs in
reasoning[3].
GNN-RAG integrates graph neural networks (GNNs) as retrieval mechanisms to extract structured knowledge paths
from KGs, which are then verbalized and fed into LLMs for answer generation[6].
4.1.3 Evaluation metrics
Following previous works [3,20,28], we use Hit@1 and the F1 score as evaluation metrics. Hit@1 checks if the ground
truth exists in the generated answers. The F1 score is a harmonic average of accuracy and recall, providing a metric that
balances false positives and false negatives.
4.1.4 Implementations
We choose Llama-3.1-8B-Instruct and Llama-2-7B-Chat as the reasoning LLMs. The number of CoT paths and KG
paths is both set to 4 to get multiple reasoning paths. The hyperparameter η for Sstruct is set to 1 × 10−4, and the threshold
θ for filtering is set to 2. Both of the parameters are selected based on the experimental results. We set the weight
coefficients α, β and γ to ensure that the scores from each dimension are considered equally when calculating the overall
score and to restrict the overall score to a range of (0 − 10). Considering that SLLM is in the range of (0 − 10) and Sstruct
is in the range of (0 − 1) , we set α = 1

3
and β = 10

3
. Because SRM varies with path quality, we dynamically adjust γ

based on its maximum and minimum values to map the score to a range of (0 − 10
3

).

4.2 Main Results

We compare our method, MQPF, to other baselines on the datasets. As Table 2 shows, MQPF performs best on CWQ
and is comparable to other baselines on WebQSP. On CWQ, the F1 score and Hit@1 are 2.6% and 6.1% above the best
baseline. On WebQSP, although MQPF itself performs slightly worse than RoG and SubgraphRAG, it can improve the
performance of the two baselines when combined with them. The MQPF+baselines increase the F1 score of the
corresponding baseline by up to 1.4% and Hit@1 by up to 1.0% on WebQSP. It shows that MQPF can effectively
enhance the multi-path reasoning of the LLMs as a plug-and-play module.
It is found that the performance of Multi-path+LLM baselines is better than that of LLM only baselines. The F1 score is
improved by up to 74.8% and Hit@1 by up to 92.9%. It indicates that multiple reasoning paths can enhance the
coverage and accuracy of the final answers. Also, the overall performance of KG-enhanced methods (Multi-path+LLM
and KG+LLM baselines) is better than that of LLM only baselines, indicating that KGs are important in MHQA tasks.
We also observe that larger LLMs do not always perform better than smaller LLMs. For the performance of
Llama-2-7B and Llama-3.1-8B, Llama-2-7B has a higher F1 and Hit@1 on the WebQSP dataset, by 4.9% and 1.6%. In
the CWQ dataset, its Hit@1 is still higher. This suggests that increasing the parameters does not inherently enhance the
graph reasoning ability of LLMs.

Table 2Model Performance on Two Datasets Comparing Three Catagories of Methods

Category Method WebQSP CWQ
F1 Score Hit@1 F1 Score Hit@1

LLM only
Qwen2-7B [24] 0.3550 0.5080 0.2160 0.2530
Llama-2-7B [25] 0.3650 0.5640 0.2140 0.2840
Llama-3.1-8B [26] 0.3480 0.5550 0.2240 0.2810

Multi-path+LLM Llama-2-7B [25] 0.4625 0.7168 0.3740 0.5411
Llama-3.1-8B [26] 0.4601 0.7137 0.3810 0.5421

KG+LLM

G-Retriever [27] 0.4674 0.6808 0.3396 0.4721
GRAG [28] 0.5022 0.7236 0.3649 0.5018

SubgraphRAG [7] 0.7057 0.8661 0.4716 0.5698
RoG [3] 0.7080 0.8570 0.5620 0.6260

GNN-RAG [6] 0.7130 0.8060 0.5940 0.6170

Our method

MQPF+Llama-3.1-8B 0.6431 0.8337 0.6094 0.6640
MQPF+Llama-2-7B 0.6427 0.8340 0.5990 0.6639

MQPF+RoG 0.7145 0.8636 0.5762 0.6370
MQPF+SubgraphRAG 0.7154 0.8718 0.5027 0.5892

Note: The best results are bolded, and the second best results are underlined.

4.3 Ablation Study

We conduct a series of evaluations of MQPF to see which component plays a key role in the overall score, including
removing SLLM, removing Sstruct, and removing SRM. We can see that the performances of variables all decrease, as shown
in Table 3. It indicates that every component is indispensable. Among them, removing Sstruct drops model performance
the most. On the CWQ dataset, the F1 score decreased by 4.1% and Hit@1 decreased by 3.1%. The situation is similar
on WebQSP. This suggests that Sstruct plays a more central role in the overall score. It evaluates the structural validity
and information density of reasoning paths to select more coherent and concise ones, which effectively improves the
accuracy of the final answers.
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Table 3 Performances of Three Model Variables

Method WebQSP CWQ
F1 Score Hit@1 F1 Score Hit@1

MQPF 0.6431 0.8337 0.6094 0.6640
w/o SLLM 0.6271 0.8188 0.5955 0.6593
w/o Sstruct 0.6196 0.8139 0.5846 0.6432
w/o SRM 0.6293 0.8237 0.5915 0.6511

Note: The best results are bolded.

4.4 Analytical Experiments

4.4.1 Structural hyperparameter analysis
For the hyperparameter for Sstruct for textual paths η, we conduct multiple experiments with different values of it. To
make the distinction between different reasoning paths greater, we set η while keeping the score differences of the
reasoning paths relatively large. As shown in Figure 4, the maximum score difference continues to improve as η
decreases. However, as η decreases, Sstruct will increasingly ignore the path length and rely more on the correlation.
After comprehensive consideration, we set η to 1 × 10−4.

Figure 4 Performances on Different Values of η

4.4.2 Threshold analysis
For the threshold θ for path filtering, we conduct multiple experiments with different values of it. As shown in Figure 5,
when θ = 2, Hit@1 is the highest. Therefore, the threshold θ is set to 2.

Figure 5 Performances on Different Values of θ

5 CONCLUSION

In this paper, we propose a Multi-dimensional Quality-aware Path Fusion framework (MQPF) for path quality
assessment and multi-path fusion in MHQA tasks. It introduces a multi-dimensional evaluation mechanism that
quantifies path quality from semantic, structural, and outcome-based dimensions. Based on the overall scores, it filters
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out low-quality paths to reduce noise and then assigns adaptive weights. Experiments show that MQPF performs
comparably to baselines and can be used as a plug-and-play module to enhance the performance of other multi-path
reasoning methods.
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