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Abstract: Underwater barnacle cleaning robots require a semantic segmentation algorithm deployable onboard to
effectively segment barnacles, obstacles, and background on ship hulls. This study independently constructed a
dedicated ship hull semantic segmentation dataset and implemented an improved BiSeNet network. The approach
integrates features from both a spatial path and a context path. Building upon the cross-entropy loss function, class
weights were strategically assigned during training according to the distribution of different target categories within the
dataset. This method achieved significantly high Intersection over Union (IOU) and F1 scores.
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1 INTRODUCTION

During prolonged oceanic transits, submerged hull surfaces inevitably develop complex biofouling communities
comprising diverse marine organisms. Crustaceans within the order Cirripedia, particularly barnacles, constitute the
most economically consequential fouling organisms due to their exceptional adhesive properties and rapid reproductive
cycles. Barnacles form permanent calcarcous attachments to hull substrates shortly after larval settlement through
proteinaceous cement secreted from specialized glands. Hydrodynamic investigations confirm that extensive barnacle
colonization beyond certain threshold levels substantially increases hydrodynamic drag by fundamentally disrupting
boundary layer flow regimes. This hydrodynamic resistance directly compromises propulsion efficiency, necessitating
considerable engine power augmentation to sustain operational speeds.

Beyond drag-related energy penalties, barnacles induce severe structural deterioration via biocorrosion pathways[1].
Their basal structures release concentrated organic acids that electrochemically compromise protective coatings. This
process generates microscale electrochemical corrosion cells where barnacle-covered zones function as anodes relative
to adjacent cathodic bare steel, markedly accelerating metal oxidation rates. Industry assessments verify that such
biodeterioration significantly curtails vessel service lifetimes, elevates dry-dock maintenance frequency, and generates
substantial latent asset depreciation not routinely accounted for in operational expenditures.

Conventional biofouling management predominantly employs hazardous diver operations or scheduled dry-docking—
both approaches exhibit critical constraints. Human divers confront safety hazards and limited operational endurance,
resulting in restricted cleaning coverage with inconsistent outcomes. Dry-dock procedures, while comprehensive,
immobilize vessels for extended periods at considerable expense, triggering logistical disruptions throughout supply
network.

Recent advancements in remotely operated and autonomous underwater vehicles have redirected industry attention
toward robotic cleaning platforms[2], offering dramatic reductions in human risk exposure and substantial operational
efficiency gains. However, achieving genuinely intelligent robotic cleaning requires overcoming perceptual limitations
in turbid marine environments. Conventional optical imaging systems suffer severe performance degradation
underwater due to light attenuation and particulate scattering, causing traditional edge detection methodologies to
misclassify sedimentary particulates as biological fouling boundaries at elevated error rates[3].

This research addresses these sensory constraints through specialized semantic segmentation frameworks, enabling
precise real-time differentiation of biofouling, structural obstacles, and background elements under validated turbidity
conditions. This capability establishes an automated inspection-cleaning-validation cycle that drastically reduces hull
maintenance durations while significantly suppressing biofouling recurrence through optimized cleaning protocols.
Collectively, these innovations transform robotic systems from basic mechanized tools into intelligent marine
maintenance platforms, delivering fundamental improvements in global maritime operational efficiency and
environmental stewardship.

2 METHODOLOGY
2.1 Multi-Level Supervised Dual-Path Network Framework
BiSeNet is a lightweight neural network specifically designed for real-time semantic segmentation[4]. Its dual-path

architecture balances spatial detail and contextual semantic information, reconciling speed and accuracy. The core
design comprises a Spatial Path (SP) and a Context Path (CP). A Feature Fusion Module (FFM) merges features
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extracted from these paths. To accelerate convergence, a multi-level supervision strategy was employed, incorporating
four auxiliary segmentation heads into the intermediate layers of the Context Path. The auxiliary loss from each head is
calculated, contributing to the total loss function, as defined in Formula (1):

4
Ltotal = Lmain + ZLlaux (1)

i=1
2.2 Weighted Cross-Entropy Loss Function

To address class imbalance (e.g., barnacle pixels being substantially fewer than background pixels), a class weighting
strategy was introduced into the standard cross-entropy loss function. This elevates the learning weight for minority
classes. The standard cross-entropy loss is expressed mathematically as Formula (3)[5]. The class-weighted variant is
given in Formula (4), where C represents the total number of classes, yi is the one-hot encoded ground truth label for
each pixel, pi is the predicted probability of the pixel belonging to each class, and wi is the class weight, inversely
proportional to the class’s pixel frequency ai.
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3 EXPERIMENTAL RESULTS
3.1 Dataset Description

A custom dataset simulating the underwater ship hull environment was constructed. Images were captured using an
RGB camera from a simulated robotic perspective. Three target categories were annotated: Background, Barnacle
Region, and Hull Obstacle. The original dataset comprised 408 images, annotated using LabelMe. Through
augmentation techniques including rotation, cropping, and brightness adjustment, the dataset was expanded to 1,872
images. Pixel distribution analysis revealed: Background (Category 0) covered 52.87%, Barnacle Region (Category 1)
covered 39.32%, and Hull Obstacle (Category 2) covered 7.80%. The dataset was split into a training set (1,498 images)
and a test set (374 images) using a 4:1 ratio. Representative dataset samples are shown in Figs. 1 to 3.

Figure 2 Image Containing Cleaned Hull Surface and Barnacle Region
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Figure 3 Image Containing Hull Obstacle, Barnacle Region, and Seawater Background
3.2 Analysis of Results

A significant imbalance exists in the pixel proportion of the three target classes within the dataset, as summarized in
Table 1.

Table 1 Dataset Class Distribution and Description

Pixel Ratio Description
52.87% Clean hull areas & seawater background
39.32% Barnacle adhesion regions
7.80% Fins, propellers, etc.

Post-implementation of the class weighting strategy, segmentation accuracy for barnacles and obstacles markedly
improved. Performance was evaluated using the F1 score and IoU metrics[6,7]. The F1 score represents the weighted
harmonic mean of precision and recall Formula(5), while IoU denotes the average Intersection over Union Formula(6), A
represents the predicted area, and B represents the ground truth area.

.
Fl Score=2* Precision*Recall )
Precision+Recall
lou = AnB (6)
AUB

Results before weighting application are detailed in Tables 2 and 3.

Single Scale(SS) denotes an inference approach where predictions are generated using the original image resolution or a
single fixed scale, without any multi-scale augmentation.

Multi-Scale Fusion (MSF) involves aggregating predictions from multiple scaled versions of the input image,followed
by fusion mechanisms such as averaging or max-voting to consolidate results across scales.

Multi-Scale Fusion with Cropping (MSFC) combines the principles of MSF with image cropping, applying multi-scale
fusion to cropped sub-regions to further enhance segmentation accuracy, especially for fine-grained details in high-
resolution scenarios.

Table 2 F1 Scores (Baseline - No Class Weighting)

F1 Score ratio ss msf msfc
cat 0 0.528740 0.852262 0.866208  0.871694
cat 1 0.393239 0.811935 0.845999  0.847779
cat 2 0.078021 0.4704 0.442935  0.531036
macro_F1 ~ 0.711532  0.718381 0.75017
micro F1 ~ 0.818883  0.837874  0.845198

Table 3 ToU Scores (Baseline - No Class Weighting)

Tou ratio Ss msf msfc
cat 0 0.528740 0.742559 0.763993  0.77257
cat 1 0.393239  0.68341 0.733101 0.735779
cat 2 0.078021 0.422108 0.543133 0.532094

mlous ~ 0.577834 0.593854 0.623284
fw mlous ~ 0.685358 0.714432  0.72603

Results after applying class weighting are presented in Tables 4 and 5.

Table 4 F1 Scores (With Class Weighting)
F1 Score ratio Ss msf msfc
cat 0 0.528739 0.872693 0.891672 0.891887
cat 1 0.393239 0.846798 0.870601 0.867972
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cat2 0.078022  0.68807  0.74849  0.75926
macro_F1 ~ 0.80252  0.836921 0.839706
micro_F1 ~ 0.85155  0.874783  0.874697

Table S IoU Scores (With Class Weighting)
Iou ratio ss msf msfc

cat 0 0.528739  0.77414  0.804521 0.804871
cat 1 0.393239  0.734302 0.770854 0.766741
cat 2 0.078021  0.524472  0.59807  0.611942
mlous ~ 0.677638 0.724481 0.727851
fw mlous ~ 0.738994 0.775174 0.774824

Following the implementation of the class weighting strategy,significant gains were observed during single-scale
evaluation:Barnacle Region (Category 1): F1 score increased from 0.811 to 0.846; IoU increased from 0.683 to 0.734.
Obstacle Region (Category 2): F1 score increased from 0.470 to 0.688; IoU increased from 0.30 to 0.524.

On the Jetson Orin NX embedded platform, the model inference speed reaches 24 FPS, meeting the real-time control
frequency requirements.

3.3 Inference Visualization

Qualitative results generated by the trained model (with weighting) on different test image types are depicted below (see
Figure 4-9), confirming effective segmentation of all three classes:

Figure 4 An Image Containing a Cleaned Hull Surface and Barnacler

Figure 5 Segmentation Map of an Image Containing a Cleaned Hull Surface and Barnacler

Figure 6 An Image Containing a Hull Obstacle, Barnacle Region, and Seawater Background
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Figure 7 Segmentation Map of an Image Containing a Hull Obstacle, Barnacle Region, and Seawater Background

Figure 8 An Image Containing Seawater Background and Barnacle Region

Figure 9 Segmentation Map of an Image Containing Seawater Background and Barnacle Region
4 CONCLUSION

This research confronts the fundamental technological barrier of precise hull-adhering contaminant segmentation. This
precision is essential for deploying truly intelligent underwater cleaning robotics across global maritime operations. It
proposes an architecturally refined lightweight semantic segmentation paradigm, anchored in an optimized BiSeNet
framework. This framework implements a sophisticated bilateral feature fusion mechanism, which coordinates high-
resolution spatial pathways with deep contextual streams. This coordination overcomes inherent precision-context trade
-offs in turbid subaquatic environments. The paradigm also strategically deploys dynamically class-weighted loss
functions. These functions probabilistically recalibrate learning priorities to counteract extreme categorical imbalances.
These imbalances exist among densely aggregated barnacle colonies, sparse structural obstructions, and heterogeneous
background interfaces.

Concurrently, it integrates hierarchical multi-level supervision modules. These modules inject auxiliary gradients across
complementary feature hierarchies to stabilize convergence pathways and amplify discriminative feature representation
capabilities. Collectively, these innovations enable unprecedented pixel-accurate real-time identification of biofouling
distributions and hazardous protrusions. This identification occurs across complex curved hull surfaces under real-world
visibility constraints. The system sustains real-time computational efficiency, which is essential for continuous hull
scanning during robotic transit. Thereby, it establishes an industrial-grade perception backbone for autonomous
underwater maintenance systems. These systems are capable of executing millimeter-precision cleaning trajectories
around thrusters, sensors, and anodes with zero collision tolerance thresholds. This capability fundamentally redefines
vessel husbandry paradigms by transitioning from reactive labor-intensive scrubbing toward strategically optimized
biofouling management systems. These new systems directly mitigate billions in global shipping fuel penalties and
coating degradation costs annually. They also provide environmentally sustainable alternatives to toxic anti-fouling
chemical treatments.

Future evolutionary research vectors explicitly target multi-physics convolutional architectures intrinsically resilient to
severe scattering noise prevalent in harbor silting conditions through wavelength-adaptive optical modeling coupled
with hybrid optical-acoustic sensor fusion frameworks that synergize RGB imaging with bathymetric laser scanning and
ultrasonic thickness mapping to circumvent spectral attenuation limitations. They also advance predictive maintenance
cognition through temporal consistency networks that correlate sequential segmentation maps into 4D hull corrosion
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progression models facilitating preventative structural interventions and lifecycle durability forecasts. Together, these
developments collaboratively position next-generation marine robotic platforms as comprehensive vessel health
guardians reconciling operational safety compliance, economic sustainability objectives, and oceanic ecosystem
preservation imperatives within unified autonomous service frameworks[8-10].
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