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Abstract: The exponential growth of e-commerce transactions has created an urgent need for sophisticated anomaly
detection systems capable of identifying fraudulent activities, system malfunctions, and unusual behavioral patterns in
real-time data streams. Traditional anomaly detection approaches fail to capture the complex interdependencies between
entities and the temporal evolution of their relationships within e-commerce ecosystems. This paper presents a novel
framework that integrates Temporal Graph Neural Networks (TGNNs) with advanced graph representation learning
techniques to address sequential anomaly detection in real-time e-commerce environments. Our approach leverages the
structural modeling capabilities of Graph Neural Networks (GNNs) while incorporating temporal dynamics through
specialized attention mechanisms and incremental learning strategies. The framework employs a multi-scale graph
construction process that captures both local neighborhood structures and global network patterns, enabling the
identification of anomalous nodes and subgraphs that deviate from established community structures. We introduce an
adaptive random walk strategy inspired by Node2Vec that balances breadth-first and depth-first exploration to capture
diverse types of anomalous patterns across different temporal scales. Comprehensive evaluation on three large-scale
e-commerce datasets demonstrates significant performance improvements, with our method achieving 17.2%
enhancement in F1-score and 14.6% improvement in Area Under Curve (AUC) compared to state-of-the-art approaches,
while maintaining sub-second inference times suitable for real-time deployment.
Keywords: Temporal Graph Neural Networks; Sequential anomaly detection; E-commerce security; Graph
representation learning; Real-time systems; Community detection

1 INTRODUCTION

The digital transformation of commerce has fundamentally reshaped the global economic landscape, with e-commerce
platforms processing unprecedented volumes of transactions that create complex, interconnected networks of
relationships between users, merchants, products, and financial entities[1]. This explosive growth has generated rich
temporal graph structures where entities continuously interact through various transaction types, creating dynamic
networks that evolve across multiple temporal scales[2]. The complexity of these networks presents both remarkable
opportunities for understanding consumer behavior and significant challenges for maintaining system security and
integrity.
Modern e-commerce ecosystems exhibit intricate relationship patterns that traditional anomaly detection systems
struggle to comprehend effectively[3]. Users form communities based on purchasing behaviors, merchants establish
networks through shared suppliers or customer bases, and products create association networks through co-purchase
patterns and recommendation systems. These relationships are not static but evolve continuously as new entities join the
network, existing relationships strengthen or weaken, and behavioral patterns shift in response to seasonal trends,
marketing campaigns, and external events. The temporal dimension adds another layer of complexity, as normal
behaviors can vary dramatically across different time periods, making it challenging to distinguish legitimate variations
from genuine anomalies[4].
The limitations of conventional anomaly detection approaches become particularly evident when confronted with
sophisticated fraud schemes that exploit both structural and temporal aspects of e-commerce networks[5]. Coordinated
fraud attacks often involve multiple accounts working in concert across extended time periods, creating subtle patterns
that are difficult to detect using traditional methods focused on individual transactions or isolated entities. Account
takeover scenarios can manifest as gradual behavioral changes that unfold over weeks or months, requiring
sophisticated temporal modeling to identify the transition points between legitimate and fraudulent activities[6]. These
challenges necessitate advanced analytical frameworks that can simultaneously model complex relationship structures
and their temporal evolution.
Recent developments in Graph Neural Networks (GNNs) have demonstrated remarkable success in learning meaningful
representations from graph-structured data, enabling the capture of complex relational patterns that traditional machine
learning approaches cannot effectively handle[7]. However, the majority of existing GNN-based anomaly detection
systems operate on static graph representations, treating temporal information as auxiliary features rather than integral
components of the learning process[8]. This limitation becomes particularly problematic in dynamic environments like
e-commerce platforms, where the temporal evolution of relationships and behaviors provides crucial contextual
information for distinguishing normal variations from genuine anomalies.
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The integration of temporal modeling with graph-based representation learning represents a critical research frontier
with significant implications for practical applications[9]. Temporal Graph Neural Networks (TGNNs) offer a
promising approach by combining the structural modeling capabilities of GNNs with sophisticated temporal reasoning
mechanisms[10]. These architectures can capture both instantaneous relationship patterns and their evolution over time,
making them naturally suited for modeling the dynamic nature of e-commerce ecosystems. However, the application of
TGNNs to real-time anomaly detection presents unique challenges related to computational efficiency, scalability, and
the need for interpretable results in high-stakes security applications[11].
The diverse nature of anomaly types in e-commerce environments requires sophisticated analytical approaches that can
adapt to different manifestations of abnormal behavior[12]. As illustrated by the comprehensive taxonomy of graph
neural network applications in time series analysis, anomaly detection represents one of four fundamental tasks
alongside classification, forecasting, and imputation, each requiring specialized architectural considerations and
optimization strategies. The interconnected nature of these tasks suggests that effective anomaly detection systems can
benefit from multi-task learning approaches that leverage shared representations across different analytical
objectives[13].
This research addresses these challenges through a comprehensive framework that advances both theoretical
understanding and practical applications of temporal graph-based anomaly detection. Our approach introduces novel
contributions across multiple dimensions, including dynamic graph construction mechanisms that efficiently process
streaming data, specialized TGNN architectures optimized for real-time inference, and interpretable anomaly scoring
methods that provide actionable insights for security analysts. The framework's emphasis on capturing community
structures and their temporal evolution enables the detection of subtle anomaly patterns that traditional methods might
overlook.
The practical significance of this research extends far beyond academic contributions to address real-world challenges
faced by e-commerce platforms worldwide. The ability to identify anomalies in real-time while providing interpretable
explanations is essential for fraud prevention, regulatory compliance, and maintaining customer trust. The framework's
scalable architecture and efficient processing mechanisms make it suitable for deployment in production environments
where response time and resource constraints are critical considerations. The integration of community detection and
temporal analysis enables more accurate identification of coordinated attacks and gradual behavioral changes that
represent emerging security threats.

2 LITERATURE REVIEW

The evolution of anomaly detection methodologies in e-commerce environments reflects the increasing sophistication
of both fraudulent activities and analytical techniques[14]. Early approaches relied heavily on statistical methods and
rule-based systems that analyzed individual transactions against predetermined thresholds and patterns[15]. These
systems typically focused on easily quantifiable features such as transaction amounts, frequency patterns, and
geographical locations, applying statistical tests to identify outliers based on historical distributions. While
computationally efficient and interpretable, these methods suffered from high false positive rates and limited
adaptability to evolving fraud patterns, particularly as e-commerce platforms grew in complexity and scale[16].
The introduction of machine learning techniques marked a significant advancement in anomaly detection capabilities,
enabling more sophisticated pattern recognition and adaptive learning from historical data[17]. Supervised learning
approaches, including Support Vector Machines (SVMs), Random Forests, and ensemble methods, demonstrated
improved performance by learning complex decision boundaries from labeled examples of normal and fraudulent
transactions. Unsupervised methods, such as clustering algorithms and one-class classification techniques, addressed the
challenge of limited labeled anomaly data by identifying patterns that deviated from established normal behavior[18].
However, these approaches continued to treat transactions as independent observations, failing to capture the relational
structures that characterize real-world e-commerce ecosystems.
The recognition of relationships and network structures in e-commerce data led to the development of graph-based
anomaly detection approaches[19]. These methods represented transactions, users, merchants, and other entities as
nodes in graphs, with edges capturing various types of relationships and interactions. Early graph-based approaches
focused on structural analysis, using topological properties such as degree centrality, betweenness centrality, and
clustering coefficients to identify anomalous nodes or subgraphs[20]. Community detection algorithms became
particularly important for identifying coordinated fraud activities, as they could reveal groups of entities exhibiting
suspicious collective behaviors that might escape detection when analyzed individually[21].
The development of graph embedding techniques revolutionized graph-based anomaly detection by enabling the
transformation of complex graph structures into low-dimensional vector representations suitable for traditional machine
learning algorithms. DeepWalk, introduced by Perozzi et al. Pioneered the use of random walks to generate node
sequences that could be processed using natural language processing techniques, effectively learning distributed
representations that preserved local neighborhood structures[22]. This approach demonstrated that nodes with similar
structural contexts would be embedded in proximity within the learned vector space, enabling the identification of
anomalous nodes based on their deviation from expected neighborhood patterns[23].
Node2Vec, proposed by Grover and Leskovec, extended the random walk framework by introducing biased sampling
strategies that could flexibly balance between breadth-first and depth-first exploration of graph neighborhoods. The
method's key innovation lay in its parameterized approach to controlling random walk behavior through return
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parameter p and in-out parameter q, as demonstrated in the algorithm's biased transition probabilities[24]. When a
random walk is at node v having come from node t, the transition probabilities to next nodes are weighted by factors
α=1 for returning to the previous node, α=1/p for staying within the local neighborhood, and α=1/q for exploring distant
parts of the graph. This flexible exploration strategy enables the capture of different types of structural relationships,
from local community structures to global connectivity patterns, making it particularly valuable for detecting various
types of anomalies that might manifest differently across the graph topology[25].
LINE (Large-scale Information Network Embedding), developed by Tang et al. Addressed scalability challenges while
introducing the important distinction between first-order and second-order proximity preservation. First-order proximity
captured direct relationships between connected nodes, while second-order proximity preserved similarities based on
shared neighborhood structures[26]. This dual approach proved particularly effective for large-scale e-commerce
networks where direct relationships might be sparse, but indirect relationships through shared connections could reveal
important anomaly patterns. The method's efficient edge-sampling optimization enabled processing of networks with
millions of nodes and billions of edges, making it suitable for real-world e-commerce applications[27].
The emergence of Graph Convolutional Networks (GCNs) and related Graph Neural Network (GNN) architectures
marked the beginning of the deep learning era in graph analysis. Kipf and Welling's seminal work demonstrated that
convolutional neural networks could be effectively adapted to graph-structured data, enabling end-to-end learning of
both node representations and downstream task objectives[28]. GCNs showed remarkable capabilities in aggregating
information from local neighborhoods through learnable convolution operations, providing a powerful framework for
capturing complex relational patterns while maintaining computational efficiency through localized processing[29].
The extension of GNN architectures to temporal domains represents a critical evolution in addressing dynamic graph
analysis challenges. Early temporal graph methods often treated dynamic graphs as sequences of static snapshots,
applying static graph algorithms to each snapshot independently or using simple temporal aggregation techniques[30].
While these approaches captured some temporal dynamics, they failed to model the continuous evolution of
relationships and the complex dependencies between different time periods that characterize real-world dynamic
systems[31].
Recent advances in Temporal Graph Neural Networks have introduced more sophisticated approaches to modeling
dynamic graphs. These methods typically combine spatial graph convolution with temporal modeling components such
as recurrent neural networks, attention mechanisms, or specialized temporal convolution operations[32]. The integration
of these components enables the simultaneous capture of structural relationships and their temporal evolution, providing
a more comprehensive understanding of dynamic graph behaviors[33].
The application domain of time series analysis using graph neural networks has expanded rapidly, encompassing
diverse tasks that reflect the multi-faceted nature of temporal graph data[34]. The comprehensive taxonomy reveals four
primary application areas: classification tasks that assign labels to temporal graph sequences, forecasting tasks that
predict future graph states or node values, imputation tasks that fill missing information in temporal graphs, and
anomaly detection tasks that identify unusual patterns or behaviors. This taxonomic framework illustrates the
interconnected nature of these tasks and suggests opportunities for multi-task learning approaches that can leverage
shared representations across different analytical objectives[35].
Within the anomaly detection category, different methodological approaches have emerged to address various types of
anomalous behaviors. Point anomaly detection focuses on identifying individual nodes or edges that deviate from
expected patterns at specific time points. Contextual anomaly detection considers the broader temporal and structural
context when evaluating whether a particular observation should be considered anomalous[36]. Collective anomaly
detection addresses the challenge of identifying groups of entities that exhibit coordinated anomalous behaviors, which
is particularly relevant for detecting sophisticated fraud schemes in e-commerce environments.
The integration of community structure analysis with anomaly detection has proven particularly valuable for
e-commerce applications, where legitimate users often form coherent communities based on purchasing behaviors,
geographic locations, or demographic characteristics. Anomalous entities typically exhibit behaviors that deviate from
established community norms, appearing as outliers within community structures or forming unusual connections
across normally separated communities. The detection of such structural anomalies requires sophisticated methods that
can model both community formation dynamics and the temporal evolution of community memberships.
Despite significant advances in temporal graph neural networks and their application to anomaly detection, several
challenges remain that limit their practical deployment in real-time e-commerce environments. Computational
complexity represents a significant barrier, as many existing methods require expensive operations that are not suitable
for real-time processing of high-volume transaction streams. Scalability concerns arise when dealing with large-scale
graphs that can contain millions of entities and billions of relationships, requiring specialized optimization techniques
and distributed processing approaches. The interpretability of results remains a critical requirement for security
applications, where analysts need to understand why particular entities or behaviors are flagged as anomalous.

3 METHODOLOGY

3.1 Dynamic Graph Construction and Community-Based Anomaly Modeling

Our approach to sequential anomaly detection in e-commerce streams begins with a sophisticated dynamic graph
construction mechanism that captures both the structural characteristics of transaction networks and their temporal
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evolution patterns. The foundation of this approach recognizes that e-commerce anomalies often manifest as deviations
from established community structures, where legitimate users naturally form coherent groups based on purchasing
behaviors, merchant preferences, and transaction patterns.
The community-based anomaly modeling in figure 1 component leverages the observation that normal e-commerce
entities typically exhibit strong intra-community connections while maintaining sparse inter-community relationships.
As illustrated in our network topology analysis, legitimate entities naturally cluster into coherent communities
(represented by the yellow-shaded region), while anomalous entities often appear as structural outliers that either form
isolated groups or exhibit unusual connection patterns to established communities. The blue solid nodes in the
visualization represent entities that deviate significantly from expected community structures, either through their
positioning outside normal community boundaries or their atypical connectivity patterns that bridge disparate network
regions.

Figure 1 Community-Based Anomaly Modeling

The graph construction algorithm maintains an incremental community detection mechanism that continuously updates
community assignments as new transactions arrive. Normal entities strengthen their community memberships through
consistent behavioral patterns and reinforced relationships within their assigned communities. Anomalous entities,
conversely, exhibit weak community affiliations, frequent community transitions, or the formation of suspicious
micro-communities with other potentially fraudulent entities. This community-centric perspective enables the detection
of coordinated fraud attacks that might manifest as unusual community formation patterns or systematic attempts to
infiltrate legitimate communities.
The temporal dimension is integrated through a sliding window approach that maintains multiple time-scale
representations of the graph structure. Short-term windows capture immediate transaction patterns and relationship
formation, while longer-term windows preserve historical context necessary for identifying gradual behavioral changes
or seasonal variations in community structures. The multi-scale temporal modeling enables differentiation between
legitimate behavioral evolution and anomalous pattern emergence, addressing one of the key challenges in dynamic
anomaly detection systems.

3.2 Node2Vec-Inspired Adaptive Random Walk Strategy

Building upon the foundation established by Node2Vec's biased random walk framework, our approach introduces an
adaptive random walk strategy specifically designed for temporal anomaly detection in e-commerce networks. The
traditional Node2Vec approach employs fixed parameters p and q to control the balance between breadth-first search
(BFS) and depth-first search (DFS) exploration strategies when generating random walks for node embedding. Our
adaptive approach extends this framework by dynamically adjusting these parameters based on temporal context and
anomaly detection objectives.
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Figure 2 The Parameter Adaptation Mechanism

The parameter adaptation mechanism in figure 2 considers three temporal factors: recent transaction velocity,
community stability, and historical anomaly patterns. During periods of high transaction velocity or rapid community
structure changes, the algorithm increases the breadth-first exploration bias (reducing q values) to capture emerging
relationship patterns that might indicate coordinated anomalous activities. Conversely, during stable periods, the
algorithm emphasizes depth-first exploration (reducing p values) to reinforce understanding of established community
structures and identify subtle deviations from normal patterns.
The adaptive random walk strategy proves particularly effective for detecting different types of e-commerce anomalies.
Coordinated fraud attacks often create temporary but intense connection patterns between previously unrelated entities,
which are effectively captured through increased breadth-first exploration during the attack period. Account takeover
scenarios typically manifest as gradual changes in connection patterns and community affiliations, requiring depth-first
exploration to trace the evolution of individual entity behaviors over extended time periods. The adaptive parameter
adjustment enables the same underlying framework to effectively address these diverse anomaly types without requiring
separate specialized models.

3.3 Temporal Graph Neural Network Architecture with Multi-Task Learning

The core TGNN architecture integrates spatial graph convolution with temporal modeling through a multi-task learning
framework that simultaneously addresses the diverse analytical objectives identified in the graph neural network
taxonomy for time series analysis. The architecture recognizes that effective anomaly detection in e-commerce
environments benefits from joint optimization across multiple related tasks, including classification of entity types,
forecasting of future transaction patterns, and imputation of missing relationship information.
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Figure 3 Spatial Graph Convolution

The spatial graph convolution in figure 3 component employs Graph Attention Networks (GAT) with temporal-aware
attention mechanisms that consider both structural relationships and temporal context when computing attention
weights.
The temporal modeling component employs a hierarchical architecture that captures dependencies across multiple time
scales. Short-term temporal patterns are modeled using Gated Recurrent Units (GRUs) that process sequences of graph
snapshots within sliding temporal windows. These GRU units capture immediate temporal dependencies and rapid
changes in network structure that might indicate acute anomalous events. Long-term temporal patterns are captured
through a Temporal Attention Network (TAN) that selectively attends to relevant historical periods when making
predictions about current states.
The multi-task learning framework leverages the taxonomic structure illustrated in the comprehensive GNN
applications diagram. The classification component assigns entity types and risk categories based on learned
representations, providing interpretable context for anomaly decisions. The forecasting component predicts likely future
states and transaction patterns, enabling proactive anomaly detection and risk assessment. The imputation component
handles missing information and relationship uncertainties that are common in real-world e-commerce data. The
anomaly detection component integrates insights from all other tasks to produce comprehensive anomaly scores with
rich contextual information.
The architecture employs shared lower-layer representations that capture fundamental graph structural patterns, while
task-specific upper layers address the unique requirements of each analytical objective. This shared representation
approach reduces computational overhead while enabling knowledge transfer across tasks, improving overall
performance and robustness. The integration of diverse analytical perspectives provides multiple lines of evidence for
anomaly detection decisions, increasing confidence in the results and reducing false positive rates.
The real-time processing capabilities are achieved through several architectural optimizations. The sliding window
mechanism limits computational complexity by focusing on recent time periods while maintaining longer-term context
through the attention mechanisms. Incremental learning techniques enable continuous model updates without requiring
complete retraining, ensuring that the system adapts to evolving patterns while maintaining low latency. The modular
architecture allows for parallel processing of different tasks and time scales, maximizing computational efficiency in
multi-core processing environments.

4 RESULTS AND DISCUSSION

4.1 Experimental Framework and Performance Evaluation

Our comprehensive experimental evaluation was conducted across three distinct large-scale e-commerce datasets that
represent different aspects of online transaction environments and anomaly types. The primary dataset comprises
real-world transaction data from a major multinational e-commerce platform, containing over 75 million transactions
spanning eight months with detailed user profiles, merchant information, and comprehensive transaction metadata. This
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dataset includes confirmed fraud cases validated through manual investigation and customer feedback, providing
high-quality ground truth for supervised evaluation. The dataset exhibits the complex community structures illustrated
in our network analysis, with legitimate users forming distinct clusters based on purchasing patterns, geographic
locations, and temporal behaviors.
The experimental methodology employs temporal cross-validation that strictly maintains chronological order, training
models on earlier time periods and evaluating on future data to simulate realistic deployment scenarios. This approach
ensures that performance metrics reflect the model's ability to generalize to genuinely unseen patterns rather than
simply memorizing historical anomalies. The evaluation framework includes both traditional anomaly detection metrics
(precision, recall, F1-score, AUC) and specialized e-commerce metrics that consider the business impact of different
error types, including false positive cost analysis and detection latency measurements.
Baseline comparisons include state-of-the-art static graph methods, traditional machine learning approaches, and recent
temporal graph neural networks adapted for anomaly detection. The static graph baselines include Graph Convolutional
Networks (GCN), GraphSAGE, and Graph Attention Networks (GAT) applied to time-aggregated graph representations.
Traditional machine learning baselines encompass Random Forest, Support Vector Machines, and isolation forest
methods applied to engineered features. Recent temporal approaches include Dynamic Graph CNN (DGCNN) and
Temporal Graph Networks (TGN) adapted for anomaly detection through reconstruction error and classification
approaches.

4.2 Community-Based Anomaly Detection Performance

The experimental results demonstrate significant performance improvements of our community-aware TGNN approach
over baseline methods, with particularly notable gains in detecting sophisticated fraud patterns that exploit community
structures. Overall performance metrics show substantial improvements: F1-score increased by 17.2% (from 0.731 to
0.856), precision improved by 19.4% (from 0.698 to 0.834), and AUC enhanced by 14.6% (from 0.804 to 0.921)
compared to the best-performing baseline methods. These improvements translate to significant practical value in
e-commerce fraud prevention, where even modest performance gains can prevent millions of dollars in losses.
The community-based analysis reveals the effectiveness of our approach in identifying different types of structural
anomalies. Coordinated fraud attacks, characterized by the formation of suspicious micro-communities or unusual
inter-community connections, were detected with 93.2% accuracy compared to 76.8% for the best baseline method. The
approach successfully identified attack patterns where fraudulent entities attempted to embed themselves within
legitimate communities, manifesting as nodes with atypical connectivity patterns that bridge normal community
boundaries while maintaining suspicious internal connections.
Account takeover scenarios demonstrated particularly impressive detection improvements, with our method achieving
91.7% accuracy compared to 74.3% for baseline approaches. The temporal community analysis proved crucial for these
cases, as account takeovers typically manifest as gradual transitions where compromised accounts gradually shift their
community affiliations while maintaining some connections to their original behavioral patterns. The adaptive random
walk strategy effectively captured these transition patterns by dynamically adjusting exploration parameters based on
community stability indicators.
Individual fraud cases, such as stolen credit card usage or synthetic identity fraud, showed more modest but still
significant improvements, with detection accuracy improving from 82.1% to 87.6%. These cases often appear as
isolated anomalous nodes that form weak connections to multiple communities without establishing strong affiliations
to any particular group. The multi-scale temporal modeling enabled early detection of such cases by identifying entities
that failed to develop normal community integration patterns within expected timeframes.

4.3 Adaptive Random Walk Strategy Analysis

The adaptive random walk component demonstrated significant advantages over fixed-parameter approaches, with
ablation studies revealing the contribution of different adaptation mechanisms. The temporal parameter adaptation
mechanism alone contributed to a 4.8% improvement in F1-score by enabling more effective exploration of emerging
anomaly patterns during different phases of attack development. The community-aware adaptation mechanism provided
an additional 3.2% improvement by focusing exploration strategies on the most relevant structural contexts for each
type of anomaly.
Analysis of parameter evolution during different anomaly events reveals distinct adaptation patterns. During
coordinated fraud attacks, the algorithm automatically reduced q values to increase breadth-first exploration, effectively
capturing the rapid formation of suspicious connection patterns between previously unrelated entities. The parameter
adaptation preceded human detection of these attacks by an average of 2.3 days, demonstrating the framework's
capability for early warning and proactive fraud prevention.
Account takeover scenarios triggered different adaptation patterns, with the algorithm reducing p values to emphasize
depth-first exploration when community stability indicators suggested potential behavioral transitions. This adaptation
strategy proved particularly effective at tracing the gradual evolution of compromised accounts as they shifted from
normal to fraudulent behavioral patterns. The depth-first exploration enabled the detection of subtle changes in
transaction patterns and relationship formations that preceded more obvious fraudulent activities.
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The computational overhead of the adaptive random walk strategy remained manageable, adding only 12% to the
baseline processing time while providing substantial detection improvements. The adaptation decisions were made
using lightweight temporal and structural indicators that could be computed efficiently during the random walk
generation process, ensuring real-time processing capabilities were maintained.

4.4 Multi-Task Learning Framework Effectiveness

The multi-task learning framework demonstrated substantial benefits over single-task approaches, with the integrated
approach achieving better performance than any individual task component. The classification task component
contributed to anomaly detection accuracy by providing contextual information about entity types and risk categories.
Entities classified as high-risk merchants or suspicious user account types received increased attention during anomaly
scoring, reducing false negative rates by 15.3% compared to approaches that did not incorporate entity classification
information.
The forecasting component proved valuable for proactive anomaly detection, identifying entities likely to engage in
fraudulent activities before explicit anomalous transactions occurred. By predicting future transaction patterns and
comparing them with actual behaviors, the system achieved early detection of developing fraud schemes with an
average lead time of 1.8 days before traditional reactive detection methods. This predictive capability enabled
e-commerce platforms to implement preventive measures and additional verification steps for high-risk entities.
The imputation component addressed the challenge of incomplete relationship information common in real-world
e-commerce data. By inferring missing relationships and attribute values, the imputation task improved the
completeness of graph representations used for anomaly detection. This component contributed to a 6.7% reduction in
false positive rates by providing more accurate context for anomaly scoring decisions and reducing misclassifications
caused by incomplete information.
The shared representation learning across multiple tasks provided regularization effects that improved overall model
robustness and generalization capabilities. Models trained with the multi-task framework showed more stable
performance across different types of anomalies and maintained accuracy better when deployed on data with different
characteristics from the training set. The knowledge transfer between tasks enabled more efficient learning and faster
adaptation to new anomaly patterns.

4.5 Real-Time Processing and Scalability Performance

Real-time performance evaluation demonstrates that our optimized implementation achieves processing latencies
suitable for production deployment in high-volume e-commerce environments. Average transaction processing time is
187 milliseconds, with 95th percentile latency remaining below 320 milliseconds even during peak load conditions.
Memory usage scales efficiently with graph size, requiring approximately 1.8 GB of memory for graphs containing 2
million entities and 25 million relationships, well within the constraints of modern server configurations.
Throughput analysis shows the system can process over 18,000 transactions per second on standard server hardware
(Intel Xeon Gold 6142, 32 cores, 128GB RAM), exceeding the peak transaction rates of most e-commerce platforms.
The incremental learning mechanism maintains consistent performance as the system processes continuous streams of
new transactions, with update times scaling linearly with the number of new relationships added rather than total graph
size.
The sliding window mechanism effectively controls computational complexity while preserving detection accuracy.
Window size optimization experiments revealed that maintaining 30-day sliding windows provided optimal balance
between computational efficiency and anomaly detection performance. Shorter windows sacrificed accuracy for
temporal anomalies that developed over extended periods, while longer windows increased computational overhead
without providing proportional accuracy improvements.
Scalability testing with synthetic datasets containing up to 10 million entities and 100 million relationships
demonstrated robust performance scaling. Processing times increased approximately linearly with graph size, indicating
that the approach remains feasible for very large e-commerce platforms. The modular architecture enables horizontal
scaling across multiple processing nodes, with near-linear speedup achieved when distributing computation across up to
16 processing cores.
Comparative analysis with baseline methods reveals substantial efficiency advantages. Traditional batch processing
approaches require periodic complete retraining that can take 6-12 hours and significant computational resources, while
our incremental approach maintains accuracy through continuous updates requiring minimal overhead. The
community-aware graph construction eliminates the need for expensive global graph operations, reducing
computational complexity from O(|V|²) to O(|E|) for most operations, where |V| represents vertices and |E| represents
edges.

5 CONCLUSION

This research presents a comprehensive framework for sequential anomaly detection in real-time e-commerce streams
that successfully integrates Temporal Graph Neural Networks with community-based structural analysis and adaptive
exploration strategies. The experimental evaluation demonstrates substantial performance improvements over
state-of-the-art approaches, with F1-score enhancements of 17.2% and AUC improvements of 14.6% while maintaining
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sub-second processing latencies suitable for production deployment. These achievements represent significant practical
value for e-commerce security applications, where even modest accuracy improvements can prevent substantial
financial losses and maintain customer trust.
The theoretical contributions of this work extend beyond performance metrics to advance fundamental understanding of
temporal graph-based anomaly detection. The community-aware graph construction mechanism provides a principled
approach to capturing the structural characteristics that distinguish normal from anomalous behaviors in complex
network environments. The adaptive random walk strategy demonstrates how classical graph embedding techniques can
be enhanced with temporal awareness and task-specific optimization to address the unique challenges of dynamic
anomaly detection. The multi-task learning framework illustrates the benefits of integrating diverse analytical objectives
to create more robust and interpretable anomaly detection systems.
The practical implications of this research address critical challenges faced by e-commerce platforms worldwide. The
real-time processing capabilities enable proactive fraud prevention and immediate response to emerging threats, while
the interpretable anomaly scoring provides security analysts with actionable insights for investigation and response. The
scalable architecture accommodates the massive scale of modern e-commerce operations, processing millions of
transactions daily without compromising detection accuracy or response times. The community-based approach proves
particularly effective at detecting sophisticated coordinated fraud attacks that traditional individual-focused methods
might miss.
The framework's emphasis on community structure analysis reveals important insights about the nature of e-commerce
fraud and legitimate user behavior. Normal users naturally form coherent communities based on purchasing patterns,
merchant preferences, and temporal behaviors, while fraudulent entities often exhibit distinctive structural signatures
that can be captured through careful analysis of community formation and evolution patterns. This understanding
provides a foundation for developing more effective fraud prevention strategies that leverage both structural and
temporal characteristics of e-commerce networks.
The adaptive random walk strategy represents a significant advancement in graph representation learning for dynamic
environments. By automatically adjusting exploration parameters based on temporal context and anomaly indicators,
the approach captures different types of anomalous patterns more effectively than fixed-parameter methods. The
temporal adaptation enables early detection of emerging fraud schemes and provides insights into the evolution of
attack strategies over time. This capability proves particularly valuable for maintaining detection effectiveness as fraud
patterns evolve in response to defensive measures.
The multi-task learning framework demonstrates the benefits of integrated analytical approaches that leverage synergies
between related tasks. The combination of classification, forecasting, imputation, and anomaly detection tasks provides
multiple perspectives on entity behaviors and risk patterns, improving overall detection accuracy while reducing false
positive rates. The shared representation learning reduces computational overhead while enabling knowledge transfer
across tasks, creating more efficient and robust analytical systems.
Future research directions include several promising extensions of this framework. The integration of heterogeneous
graph structures that incorporate different types of entities and relationships could further enhance detection capabilities
by capturing additional aspects of e-commerce ecosystems. Advanced temporal modeling techniques, including
transformer architectures and memory-augmented networks, represent opportunities for capturing even more complex
temporal dependencies in transaction streams. The development of federated learning approaches could enable
collaborative anomaly detection across multiple platforms while preserving data privacy and competitive advantages.
The exploration of explainable AI techniques specifically designed for temporal graph neural networks represents
another important research direction. While the current framework provides interpretable community-based
explanations, more sophisticated explanation mechanisms could enhance trust and facilitate human-AI collaboration in
fraud investigation processes. Advanced visualization techniques for temporal graph evolution could provide security
analysts with intuitive interfaces for understanding complex fraud schemes and their development over time.
The application of reinforcement learning techniques to optimize adaptive random walk strategies represents a
promising direction for creating even more effective exploration mechanisms. By learning optimal parameter adaptation
strategies from historical anomaly detection outcomes, the system could develop increasingly sophisticated responses to
different types of threats. The integration of external data sources, including social media activity, device fingerprinting,
and geographic information, could provide additional context for anomaly assessment and improve detection accuracy
for sophisticated fraud schemes.
The successful demonstration of temporal graph neural networks for e-commerce anomaly detection establishes a
foundation for applications in other domains where temporal relationship analysis is critical. Financial services, social
media platforms, cybersecurity systems, and supply chain management represent domains where similar approaches
could provide significant value. The modular architecture and principled design of the framework facilitate adaptation
to these diverse application contexts through appropriate graph construction and feature engineering strategies.
This research contributes to the broader understanding of temporal graph analysis and its applications to complex
real-world problems. The integration of structural and temporal modeling provides a powerful framework for analyzing
dynamic systems where relationships and behaviors evolve continuously over time. The emphasis on interpretability
and real-time processing addresses practical requirements for deploying advanced analytical systems in production
environments where human oversight and immediate response capabilities are essential.
The demonstrated scalability and efficiency characteristics make this approach suitable for large-scale deployments
where traditional methods become computationally prohibitive. As e-commerce platforms continue to grow and fraud



Sophia Walker & Luis Alvarez

Volume 2, Issue 1, Pp 37-47, 2025

46

schemes become increasingly sophisticated, the ability to effectively analyze complex temporal graph structures will
become even more critical for maintaining security and trust in digital commerce environments. This research provides
both theoretical foundations and practical tools for addressing these challenges, contributing to the ongoing evolution of
intelligent security systems for the digital economy.
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