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Abstract: Accurate estimation of traffic flow is crucial for urban traffic management and control, particularly when
only main road monitoring data is available and feeder road data is missing. This study addresses the challenge of
inferring feeder road traffic flow from main road data by developing a series of regression models tailored to different
road structures and traffic conditions. For a Y-shaped basic road network, both linear and piecewise linear regression
models were established, achieving perfect fitting of the main road traffic flow. In multi-branch scenarios that account
for delays and cyclical fluctuations, an integrated model comprising constant, piecewise linear, and periodic functions
was proposed, achieving a goodness of fit of 0.9722. Under traffic signal control conditions, a composite model
including piecewise functions and periodic components was developed, effectively addressing traffic interruptions
caused by signals, with a goodness of fit of 0.9642. In noisy data environments, a robust regression framework with
adaptive weighting was introduced, maintaining high accuracy despite noise interference. The results indicate that the
proposed models can effectively reconstruct feeder road traffic patterns, offering excellent interpretability and
robustness. This provides a reliable data foundation for signal timing optimization and congestion management,
offering practical solutions for traffic flow estimation in certain observed road networks.
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1 INTRODUCTION

Since the initiation of the reform and opening-up, China's urbanization process has continuously advanced, with the
congestion pressure on traffic systems becoming increasingly prominent. Real-time and accurate acquisition of road
traffic flow information has become key to improving traffic operational efficiency and optimizing signal control.
Currently, monitoring equipment has been widely deployed on main roads, but many feeder roads are limited by
insufficient equipment coverage, lacking real-time traffic data, which hinders a comprehensive understanding of
network operations. Therefore, inferring feeder road traffic flow from main road monitoring data has become a critical
issue in intelligent transportation systems.

Traffic flow forecasting methods primarily include traditional statistical regression and artificial intelligence-based
prediction approaches. In terms of traditional statistical methods, time series models, such as ARIMA, are widely used
in traffic flow prediction due to their ability to effectively capture temporal dependencies[1]. Linear regression methods,
due to their simplicity and interpretability, have always maintained an important position in traffic flow modeling.
Ceder[2], through establishing statistical relationships between hourly traffic flow and accident rates, revealed
fundamental traffic flow patterns. However, traditional methods are limited in their ability to capture complex nonlinear
relationships and struggle to adapt to the dynamic changes in actual traffic flow.

With the development of machine learning techniques, significant progress has been made in traffic flow forecasting
research. Support vector machines (SVM) address nonlinear issues through kernel functions and have demonstrated
excellent performance in short-term traffic flow forecasting[3]. Ensemble learning methods, such as random forests,
effectively handle high-dimensional data, enhancing prediction accuracy[4]. In recent years, deep learning models such
as Recurrent Neural Networks (RNN) and Long Short-Term Memory Networks (LSTM) have shown strong capabilities
in time-series data modeling[5]. Researchers compared the prediction effectiveness of autoregressive models and neural
network models, finding that neural networks performed better in complex scenarios[6]. However, these data-driven
methods typically require large amounts of high-quality training data and still face challenges in terms of robustness
against noise and missing values[7-8].

In real-world road networks, traffic flow variations often exhibit complex features such as segmentation, periodicity,
and nonlinearity[9]. Researchers revealed the multimodal characteristics of traffic flow by analyzing real-time traffic
monitoring data and accident relationships[10]. They established a multi-lane traffic flow model that accounts for the
effects of queuing. This paper, focusing on typical road structures, combines least squares fitting, piecewise regression,
and periodic functions to construct a composite model, incorporating robust optimization strategies to achieve
high-precision inversion of feeder road traffic flow. The findings of this study provide valuable data support for signal
timing, congestion alleviation, and road network planning, offering both theoretical value and practical significance.

2 TRAFFIC FLOW PREDICTION FOR MAIN ROADS IN A Y-SHAPED ROAD NETWORK
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2.1 Restatement of the Problem and Modeling Background

In road network monitoring, main roads are often equipped with traffic detection devices, while some feeder roads lack
real-time monitoring capabilities due to cost or layout constraints. Considering a typical Y-shaped road structure (as
shown in Figure 1), where the traffic from Feeder Road 1 and Feeder Road 2 converges onto Main Road 3, the device
A1 on Main Road 3 records traffic flow every 2 minutes. It is known that the traffic on Feeder Road 1 follows a linear
growth trend, while the traffic on Feeder Road 2 initially increases linearly before decreasing linearly. The challenge is
to infer the traffic flow function relationships of the two feeder roads based on the monitoring data from Main Road 3.

Feeder Feeder
Road 1 Road 2

Feeder
Road 3

Figure 1 Y-shaped Basic Road Network Structure
2.2 Model Development

Let the time variable ( t ) be defined with 7:00 as the starting point (t =0 ), and its range is [0,59] (corresponding to the
time period from 6:58 to 8:58). The traffic flow on the main road is the sum of the traffic flows from Feeder Road 1 and
Feeder Road 2:

Qumain(D=Q1 (H+Qx(t) (1)
Where the traffic flow on Feeder Road 1 is a linear function:
Q;(t)=a,t+b, 2

The traffic flow on Feeder Road 2 is a piecewise linear function:
azﬁ‘bz OSISIC
Q0= {*a3t+b3 1,<1<59
The following non-negativity constraints must be satisfied: Q;(£)>0,0,(1)>0, and a;>0,a,>0,a;>0.

2.3 Parameter Estimation and Solution

The model parameters are estimated using the least squares method, with the objective function defined as:
59 2
()~ +
. I (O (ORI O 3

The parameter values are obtained through optimization as:
a1=0.5,b1=7,a2=a3=1,tc=30 (4)

2.4 Results and Analysis

The model fitting results indicate that the error metrics show perfect alignment between the model and the observed
data, demonstrating extremely high fitting accuracy. From a practical traffic perspective, the traffic flow on Feeder
Road 1 increases linearly at a rate of one vehicle every two minutes, with an initial flow of 7 vehicles. The traffic flow
on Feeder Road 2 peaks at 30 vehicles at 8:00 (t=30), after which it decreases symmetrically. This result confirms the
effectiveness of both the linear and piecewise linear models in inferring traffic flow for simple road network structures.
Not only does it replicate the temporal variation of feeder road traffic, but it also provides reliable data support for
traffic signal timing optimization and congestion management, highlighting the suitability of the least squares
regression method for such problems.

3 TRAFFIC FLOW PREDICTION FOR MAIN ROADS WITH MULTIPLE FEEDER ROAD TYPES
3.1 Restatement of the Problem and Modeling Background
In the case of a more complex multi-feeder road convergence scenario, this study investigates the traffic flow

composition of Main Road 5, which is formed by the convergence of four feeder roads, each with distinct traffic flow
patterns. Specifically, Feeder Roads 1 and 2 exhibit a 2-minute transmission delay when converging onto Main Road 5,
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while Feeder Roads 3 and 4 experience no delay. Based on the characteristics of the monitoring data, the traffic flow on
Feeder Road 1 remains constant, Feeder Road 2 exhibits linear growth followed by a stable state in different periods,
Feeder Road 3 shows linear growth followed by stabilization, and Feeder Road 4 displays noticeable periodic
fluctuations. An integrated model that accounts for delay effects, piecewise changes, and periodic characteristics needs
to be developed to accurately infer the traffic flow on each feeder road (Figure 2).

Feeder Feeder
oad 1 Road 2
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Road 5

Figure 2 Multiple Feeder Road Types
3.2 Model Development and Solution

Based on the observed data and traffic flow characteristics, the following feeder road traffic flow function models are
established:
® Feeder Road 1 is modeled as a constant function:

0,(1)=24.5 ()
® Feeder Road 2 is modeled as a piecewise linear function, accounting for its varying growth and stable behavior in
different time periods:

1.35(-1) -1<23
0,(H)= 30 23<t-1<36 (©6)
30+0.5(t-1-35) -1>36

® Feeder Road 3 is modeled as a growth-to-stabilization function:

026411 <18
0:0-{,0 £18 @

® Feeder Road 4 is modeled as a periodic function, with its traffic flow segmented according to time phases:
0 phase €[0,5]
10 phase € [6,13]
Ou()= 0 phase € [14,17] (8)
10 phase €[18,25]
0 phase €[26,27]
Where phase=mod(|t],28). Each time unit corresponds to 2 minutes.
®  The total traffic flow on Main Road 5 is the sum of the traffic flows from each feeder road, accounting for the
delay effects:

Y()=0,(t-2)+05(1=2)+03()+04(0) +e(2) ©
3.3 Results and Validation

At key time points 7:30 (t = 15) and 8:30 (t = 45), the predicted traffic flow values for each feeder road are shown in
Table 1:

Table 1 Predicted Traffic Flow Values for Each Feeder Road

Time Point Feeder Road 1 Feeder Road 2 Feeder Road 3 Feeder Road 4
7:30 24.5 18.9 14.0 0.0
8:30 24.5 34.5 10.0 0.0

The overall goodness of fit of the model indicates that it effectively replicates the actual observed dataR?>=0.9722.
Residual analysis reveals that the errors primarily stem from the simplified assumption of Feeder Road 4's periodic
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behavior and measurement noise, with residuals being particularly significant near phase transition points. Nevertheless,
the model maintains high prediction accuracy during most periods, confirming the effectiveness of the multi-modal
regression method in the decomposition of complex traffic flow (Figure 3). This provides a practical tool for the precise
inference of heterogeneous traffic flow components in transportation systems.
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Figure 3 Residual Analysis for Problem 2

Predicted traffic volume

4 TRAFFIC FLOW PREDICTION FOR MAIN ROADS WITH MULTIPLE FEEDER ROAD TYPES
UNDER TRAFFIC SIGNAL CONTROL

4.1 Restatement of the Problem and Modeling Background

This study focuses on a complex road system regulated by traffic signals, where Feeder Road 3 is controlled by a traffic
light, resulting in periodic flow on-off characteristics. The system also includes Feeder Roads 1 and 2, with the traffic
from all three converging onto Main Road 4. Device A3 records the traffic flow on Main Road 4 every 2 minutes
(Figure 4). The task is to infer the traffic flow patterns of each feeder road based on this data. The challenge lies in
incorporating the periodic constraints introduced by external control signals, while also considering the complex
piecewise variation on Feeder Road 1, the multi-segment linear behavior on Feeder Road 2, and the periodic zeroing
characteristic of Feeder Road 3. This represents a typical mixed dynamic system modeling problem.
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Figure 4 Multiple Feeder Road Types
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4.2 Model Development

Based on the traffic flow characteristics of each branch, the following functional model is established:
® Branch 1 utilizes a five-segment composite model, encompassing stages of no flow, secondary growth, secondary
decline, stability, and exponential decay.

—2<¢<10
1.02(+~10)*+1.98(+—10) 10<£<30
0,(H)= —0.97(+-30)*-1.97(+-30)+99.8  30<1<60 (10)
79.88 60<t<90
79.88¢ 0-098(790) 90<<118
®  Branch 2 employs a three-phase linear model, consisting of linear growth, stability, and linear decline.
1.02(¢#+2) —2<t<70
0,(8)= 50 70<t<94 (11)
50-0.98(+-94) 94<i<118

®  Branch 3 follows a cyclic function controlled by traffic signals, with linear growth during the green light phase and
a constant flow during the red light phase.
1.02+1.98(+—10) € [6+18n,16+18x]

0:0={ " o (12)

® The traffic flow on Main Road 4 is the cumulative flow of all branches, with a 2-minute delay considered for
Branches 1 and 2.

O4()=0,(1=2)+0x(1-2)+05(1) (13)
The model parameters are determined through constrained least squares fitting and piecewise optimization techniques.
4.3 Results and Analysis
At the typical times of 7:30 (t=15) and 8:30 (t=45), the predicted traffic flow for each branch is as follows in Table 2:

Table 2 Predicted Traffic Flow for Each Branch

Time Point Feeder Road 1 Feeder Road 2 Feeder Road 3
7:30 18.4 16.0 13.3
8:30 24.0 36.0 0.0
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Figure 5 The Fitting Performance of Road Traffic Flow Prediction and the Contribution Rate of Each Branch

The overall goodness of fit for the model shows an average absolute error of 1.89 and a mean squared error of 6.32,
indicating strong predictive accuracy (Figure 5). Notably, at 8:30, the traffic flow of Branch 3 is zero, which aligns with
the actual situation during the red light phase. Residual analysis reveals that the errors are evenly distributed along the
time axis, with no evident systematic bias, suggesting that the model effectively captures the cyclic characteristics under
signal light control and the composite dynamics of each branch (Figure 6). This model successfully addresses the traffic
flow inversion problem under periodic control conditions, providing more precise data support for signal timing
optimization and traffic management.
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Figure 6 Residual Distribution of the Main Road Traffic Flow Prediction Model

5 CORRECTION OF THE MAIN ROAD TRAFFIC FLOW PREDICTION MODEL IN THE PRESENCE
OF DATA ERRORS

5.1 Restatement of the Problem and Modeling Background

Having explored the prediction of main road traffic flow under ideal conditions for different road types, we now turn
our attention to the inevitable data error issues present in real-world monitoring environments. The traffic flow
monitoring device A3 on Main Road 4 records data during the period from 6:58 to 8:58 that contains significant errors,
and it is crucial to reliably reverse-engineer the true flow of the three secondary roads under these conditions. The core
challenge of this problem lies in how to accurately estimate the segmented variations of Branch 1, the three-stage
characteristics of Branch 2, and the periodic on-off behavior of Branch 3, which is controlled by an unknown green
light activation time. This represents a classic case of reverse modeling with error-laden data.

5.2 Model Formulation

In response to the characteristics of data errors, the following robust regression framework is established:
® Branch 1 utilizes a piecewise linear model with smooth transitions:

0 <6
) 12(06) 6<1<28
Q0= 25 28<t<48 (14)

25-2.272(t-48) 48
® Branch 2 constructs a piecewise function that accounts for transition zones:

0.39¢+18 <18
O, ()= 25 18<1<35 (15)
max(25—1.5625(t-36),0) 35

®  Branch 3 establishes a periodic function controlled by traffic signal lights:

1.02+1.98(+—10 t€[6+18n,16+18
0~ (-10)  ¢€[6+18n,16+18n] (16)
0 else
®  The traffic flow observation model for Main Road 4 is:
(=01 (1=2)+ 0, (t-2)+05 ()& (1) (17)

where £(f) represents the observation error term.

By employing robust least squares and M-estimation techniques, along with an adaptive weight function to mitigate the
impact of outliers, the method iteratively optimizes to simultancously estimate the green light start time
loreen=2(corresponding to 7:04) and the parameters of each branch model.

5.3 Results and Analysis
Under conditions of data errors, the model's prediction results at critical time points are as follows in Table 3:

Table 3 Predicted Traffic Flow Values for Each Branch

Time Point Feeder Road 1 Feeder Road 2 Feeder Road 3
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Time Point Feeder Road 1 Feeder Road 2 Feeder Road 3
7:30 11.0 24.8 25.6
8:30 26.2 14.6 0.0
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Figure 7 Traffic Flow Function Curves for Each Branch

The overall model fit quality shows a mean squared error of 15.29 and a mean absolute error of 3.06. Notably, despite
the presence of noise in the data, the model maintains a high degree of accuracy, particularly in identifying the periodic
behavior of Branch 3 and capturing the phase transition points of Branches 1 and 2 (Figure 7). Residual analysis
indicates that errors are mainly concentrated during periods of rapid flow changes, but no systematic bias is observed,
validating the effectiveness of the robust optimization method (Figure 8). These results demonstrate that the proposed
robust regression framework can effectively resist the interference of monitoring errors, providing a reliable solution for
flow inversion in noisy data within real-world traffic systems.
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Figure 8 Model Residual Distribution

6 CONCLUSIONS

This paper systematically investigates the inverse methods based on regression modeling for urban road traffic flow
estimation and prediction, with a particular focus on addressing the challenge of estimating traffic flow on secondary
roads that lack monitoring equipment. By constructing linear regression, piecewise linear regression, nonlinear
composite, and periodic function models, and combining least squares fitting with error optimization strategies, we
successfully achieved high-accuracy estimation of traffic flow on secondary roads across multiple scenarios.
Specifically, by developing a linear and piecewise linear overlay model for traffic flow on secondary roads at a
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Y-intersection, perfect fitting of the main road traffic flow was achieved, demonstrating the superior performance of
this method in simple road structures. In the prediction of main road traffic flow with multiple secondary roads, we
further incorporated delay effects and periodic fluctuations, constructing a composite model for multiple secondary
roads, which achieved a goodness-of-fit of 0.9722, showcasing the model’s adaptability to complex situations. For
multi-branch main road traffic flow prediction under signal light control, we established periodic control and robust
regression models, which, even in noisy data environments, maintained high accuracy, proving the model's robustness
and practical applicability.

The series of models established in this study not only exhibit high fitting precision and robustness but also offer
transparency, strong parameter interpretability, and high computational efficiency, making them easy to integrate into
real-world traffic control systems. For example, the model results can be directly applied in signal timing optimization,
dynamic lane management, congestion warning, and other scenarios, providing a reliable data foundation and decision
support for the construction of intelligent transportation systems. However, it should be noted that this study still has
some limitations, such as the lack of consideration of external factors like weather and unforeseen events, and the
model's adaptability in extreme scenarios needs further validation.

In future research, several directions warrant further exploration: first, incorporating additional external variables and
contextual information to develop enhanced regression models that integrate multi-source data; second, combining deep
learning with spatiotemporal graph neural networks to further improve the model's ability to capture the complex
spatiotemporal relationships in large-scale road networks; third, integrating the proposed models with actual traffic
control platforms for validation. Through continuous optimization and interdisciplinary collaboration, regression-based
traffic flow inversion techniques are expected to play an increasingly significant role in intelligent transportation
systems.
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