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Abstract: The analysis of teacher-student behaviour within classroom settings forms the bedrock of smart education
research and application. However, existing general-purpose behaviour detection models often exhibit suboptimal
accuracy and efficiency when processing extended classroom videos. This stems primarily from their inability to
effectively address four key challenges: variable behaviour duration, complex semantic layers, heterogeneous
multimodal information, and high background redundancy. To address these challenges, this paper proposes a novel
classroom video behaviour proposal model. Its core innovation lies in the synergistic utilisation of multimodal attention
mechanisms and adaptive search strategies. First, a robust multimodal feature extraction backbone network is
constructed to extract highly discriminative features from video, audio, and automatic speech recognition (ASR)
transcribed text. Subsequently, a hierarchical multimodal attention fusion module is designed. This module dynamically
captures and integrates behaviour-related key visual segments, audio events, and semantic keywords through two-stage
computations: intra-modal attention and cross-modal attention. Building upon this foundation, we innovatively propose
an adaptive boundary search algorithm inspired by reinforcement learning principles. This algorithm dynamically
adjusts search stride and direction based on the contextual semantics and behavioural confidence of the current video
segment, enabling efficient and precise boundary localisation for action proposals within lengthy video sequences. To
validate model performance, we constructed a large-scale classroom behaviour dataset, ‘Edu-Action’. Comprehensive
experimental results demonstrate that our model achieves significant improvements in the core evaluation metric for
action proposal tasks, average recall at action number (AR@AN). At a tIoU threshold of 0.5, recall reaches 68.7%,
comprehensively outperforming multiple advanced baseline models. Extensive ablation studies further validate the
effectiveness and necessity of each component within the model. This paper presents an effective solution for
fine-grained action localisation in long-duration video environments, holding significant theoretical implications and
broad practical application prospects.
Keywords: Behavioural proposal generation; Multimodal learning; Attention mechanisms; Adaptive search; Classroom
video analysis; Smart education; Deep learning

1 INTRODUCTION

The intrinsic demand for enhancing quality and efficiency within the context of educational informatisation has made
the digital and intelligent analysis of classroom teaching processes a research hotspot in the field of education [1]. The
vast volume of classroom video recordings generated and stored constitutes a valuable educational big data goldmine.
Automatically identifying, locating, and understanding teaching behaviours such as ‘teacher board writing’, ‘student
raising hands to speak’, and ‘group collaborative inquiry’ holds revolutionary significance for achieving objective
classroom teaching evaluation, precise teaching reflection, personalised learning situation analysis, and deep mining of
educational big data [2,3]. Time-based behaviour proposals serve as the bridge connecting low-level video features with
high-level behavioural understanding, representing the primary and critical component within the behavioural analysis
pipeline [4]. The task objective is to precisely locate all potential start and end timepoints for behaviours of interest
within an unedited, uncropped video sequence, without pre-assigned behavioural category labels, and to generate
confidence scores for these locations [5]. However, the unique characteristics of classroom settings render this task
exceptionally complex.
Firstly, the extreme variability in behavioural duration, with classroom actions exhibiting an exceptionally broad
distribution range [6]. Instantaneous, atomic behaviours such as ‘a pupil raising their hand’ or ‘a teacher pointing at the
screen’ may last merely 1 or 2 seconds [7]. Conversely, complex, high-level teaching activities like ‘group project
collaboration’ or ‘classroom debates’ may persist for several minutes or even an entire lesson. This vast scale disparity
poses a formidable challenge to a model's multiscale perception capabilities. Secondly, the hierarchical and nested
nature of behavioural semantics. Classroom activities do not exist in isolation but form a complex hierarchical structure
[8]. For instance, a macro-level behaviour like ‘teacher explaining a new concept’ may internally embed multiple
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micro-behaviours such as ‘teacher writing on the board,’ ‘teacher posing questions,’ or ‘playing instructional videos.’
This phenomenon of ‘behaviours within behaviours’ makes it exceedingly difficult to clearly and accurately delineate
behavioural boundaries. Thirdly, the strong multimodal dependency of behavioural identification. Defining classroom
behaviours often cannot rely solely on visual information. Auditory cues—including shifts in the teacher's intonation,
students' choral responses, sudden quietness—and linguistic information—such as specific phrasing in teacher
questions or core conceptual terms mentioned during explanations—are crucial clues for identifying behavioural onset
and transitions [9]. For instance, the initiation of a ‘teacher posing a question’ behaviour may be jointly signalled by
visual cues such as a ‘teacher's pause’, auditory cues like an ‘upward inflection in tone’, and textual cues such as the
presence of ‘interrogative words’. Effectively aligning and integrating these heterogeneous modal information streams
represents a core challenge. Fourthly, the high redundancy and intra-class variability within video backgrounds.
Extensive segments unrelated to target behaviours exist within lengthy classroom videos, such as student self-study
periods, classroom silences, and camera transitions [10]. Traditional sliding window or dense anchor methods generate
numerous invalid proposals in these regions, resulting in substantial computational resource wastage and reduced recall
rates. Concurrently, the visual and auditory manifestations of the same behaviour may exhibit significant variations
across different classes and subjects, demanding robust generalisation capabilities from the model.
Existing behavioural proposal methods, such as the anchor-based SSN[11] and boundary-matching BMN[12], have
achieved success on general datasets. However, their original design did not sufficiently account for the aforementioned
particularities of classroom scenarios. Most rely on a single visual modality or perform simple post-fusion of
multimodal information, failing to fully exploit the deep interconnections between modalities. Furthermore, they
commonly employ predefined, fixed-scale anchors or sliding windows, rendering them ill-suited to accommodate the
extreme temporal variability inherent in classroom behaviours. This limitation creates bottlenecks in both accuracy and
efficiency. To address these issues, this paper proposes an end-to-end classroom behaviour proposal model. Its core
contribution lies in designing a hierarchical multimodal attention fusion module that dynamically and efficiently
integrates visual, auditory, and linguistic information while focusing on behaviour-relevant key cues. Concurrently, an
adaptive boundary search algorithm is introduced. By simulating human browsing and focusing behaviours, it
dynamically adjusts search strategies, significantly enhancing efficiency in long-video analysis while maintaining recall
rates. Notably, a large-scale, high-quality classroom behaviour dataset, ‘Edu-Action’, has been constructed to advance
research in this domain.

2 RELATED RESEARCH

2.1 Generation of Timed Behaviour Proposals

Time-based action proposal generation constitutes a foundational task within video understanding, with its specific
architecture illustrated in Figure 1. Early approaches such as S-CNN[13] and SST[14] primarily relied on sliding
windows of varying scales across video sequences to generate candidate segments, a method characterised by high
computational demands and limited flexibility. Subsequently, the BMN model, based on boundary matching principles,
achieved high-quality proposal generation by evaluating all candidate intervals between start-end point pairs, becoming
a landmark work in the field. Later efforts such as DBG[15] and RTD-Net[16] further optimised the precision of
boundary localisation. However, these approaches were primarily designed for short video clips or sports events. Their
fixed anchor scales or matching mechanisms often prove inadequate when confronted with behaviours spanning vast
durations within lengthy classroom videos. Moreover, the substantial volume of negative sample proposals they
generate severely impacts training efficiency and final performance.

Figure 1 Temporal Behavior Proposal Generation Structure

2.2 Multimodal Video Understanding

Video is inherently a natural amalgamation of visual, auditory, and textual information. Effectively integrating these
heterogeneous modalities constitutes the core challenge of multimodal learning [17]. Early fusion approaches included
simple feature concatenation, max/mean pooling, and similar techniques. Subsequently, tensor-based fusion methods
and bilinear pooling were proposed to capture more complex interactions between modalities, though these often
entailed substantial computational overhead [18]. In recent years, attention mechanisms—particularly self-attention
within Transformer architectures and cross-modal attention—have become mainstream techniques for multimodal
fusion [19]. These enable models to dynamically compute importance weights across different modalities and within the
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same modality at distinct temporal steps. In classroom settings, Sameer et al. attempted to utilise audio event detection
to augment behaviour recognition, yet failed to achieve end-to-end deep fusion [20]. Our work draws inspiration from
this approach but introduces a more refined hierarchical attention structure designed to capture cross-modal temporal
alignment relationships in classroom behaviours with greater precision.

2.3 Efficient Video Analysis and Search Strategies

To address the inefficiency of long video analysis, researchers have proposed various strategies. Some approaches
employ a two-stage strategy, involving coarse screening followed by fine-tuning. Others attempt to learn search
strategies through reinforcement learning, intelligently skipping irrelevant frames. In recent years, the state space model
Mamba has garnered attention for its efficiency in modelling long sequences [21]. Our adaptive search module shares
the underlying philosophy with such approaches, but innovatively links the search stride directly to the local contextual
information and behavioural confidence of the current segment. This achieves a data-driven, content-aware dynamic
search mechanism better suited to the uneven distribution of classroom behaviours.

3 METHODS

In the method proposed in this study, we construct an end-to-end framework whose core process commences with deep
feature extraction from visual, audio, and transcribed textual components of classroom videos. Subsequently, through a
hierarchical multimodal attention module, it dynamically calculates intra-modal and cross-modal attention weights to
adaptively fuse the most semantically relevant visual segments, audio events, and textual keywords associated with
behavioural semantics. This ultimately drives an innovative adaptive search algorithm. This algorithm intelligently
adjusts the search stride and direction based on the contextual semantics and behavioural confidence of the current
segment. Consequently, it efficiently and accurately locates the start and end boundaries of potential behavioural
segments within lengthy video sequences. The specific architecture is illustrated in Figure 2. The overall architecture
comprises three core components: multimodal feature extraction, a hierarchical multimodal attention fusion module,
and an adaptive proposal search module.

Figure 2Model Architecture Diagram

3.1 Multimodal Feature Extraction

As illustrated in Figure 1, given a long classroom video clip V , we first uniformly partition it into non-overlapping
segments of length L . For each segment t , we concurrently extract features from three modalities, as detailed in
Figure 3.

Figure 3Multimodal Features

Visual features vRF dv
t  . To capture appearance and motion information, we employ the I3D model pre-trained on

the large-scale action recognition dataset Kinetics-400 [22] as the backbone network [23]. For each clip, we extract its
RGB frames and corresponding optical flow frames, pass them through the I3D network respectively, and concatenate
the features obtained before the final fully-connected layer to yield the final visual feature vector v

tF .
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Audio features ada
t RF  . We employ the VGGish model to extract audio features [24]. This model, pre-trained on a

large-scale YouTube audio dataset, captures semantic information of meaningful audio events. We extract the log-Mel
spectrogram from the audio waveform aligned with the video clip and feed it into the VGGish network to obtain a

tF .

Text features tdt
t RF  . We first utilise industrial-grade automatic speech recognition (ASR) services (such as Google

Cloud Speech-to-Text[25] or Azure Speech Services[26]) to convert the audio stream into a timestamped text
transcription. Subsequently, for each video segment t , we aggregate all corresponding transcribed text sentences
within its temporal scope. Finally, sentence embedding vectors for this aggregated text are obtained using a pre-trained
BERT model[27] as text feature Ftt . This feature encapsulates rich semantic information, such as keywords and
interrogative sentences.
Ultimately, we obtained three feature sequences,

     tLttta
L

aaav
L

vvv FFFFFFFFFFFF ,.....,,,,.....,,,,.....,, 212121  。

3.2 Hierarchical Multi-modal Attention Fusion Module

This module is designed to dynamically and selectively fuse information from three modalities, amplifying
behaviour-relevant cues while suppressing irrelevant noise. Its architecture, as depicted in Figure 4, comprises two
hierarchical levels.
First, we apply a Transformer encoder layer [28] to the feature sequences of each modality, performing intra-modal
self-attention calculations. Taking the visual modality as an example, this is illustrated in Equation 1.

)( vv FrTransformeF 


(1)

Figure 4 Hierarchical Multi-modal Attention Fusion Module

Here, vF denotes the sequence of visual features enhanced through modal self-attention. The self-attention
mechanism captures long-range temporal dependencies. For instance, it enables the model to recognise that an action
such as ‘a pupil standing up’ may correlate with an action like ‘a teacher posing a question’ several seconds prior, even
when intervening frames are unrelated. Similarly, the enhanced audio features aF and text features tF are obtained
as shown in Equations 2 and 3.

)( aa FrTransformeF 


(2)

)( tt FrTransformeF 


(3)
Following the extraction of enhanced features across modalities, cross-modal information interaction and fusion are
performed. A vision-dominant fusion strategy is adopted, as vision serves as the primary vehicle for behavioural
expression. Specifically, visual features are employed as the Query, with audio and text features functioning as Key and
Value respectively, to conduct cross-attention computations.
Visual and audio fusion enables the model to recalibrate the importance of visual features using audio cues , such as
sudden applause or loud questions , as illustrated in Equation 4. When audio features indicate ‘applause,’ the model
prioritises segments showing ‘students standing’ or ‘teachers gesturing’ in the visual data.

),,(2

aavav FVFKFQtionCrossAttenF  (4)
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The fusion of visual and textual information enables semantic cues to guide the allocation of visual attention, as
illustrated in Equation 5. For instance, when the text prompts ‘Let's discuss this in groups,’ the model will purposefully
seek visual patterns such as ‘students turning their heads’ or ‘forming groups’ within the corresponding visual segments.

),,(2

ttvtv FVFKFQtionCrossAttenF  (5)

Finally, we fuse the original enhanced visual features with the two cross-modal attention outputs, as shown in Equation
6.

)( 22 tvavvfusion FFFMLPF 


(6)
Here,  denotes the vector concatenation operation, while MLP represents a multi-layer perceptron used to project

the concatenated high-dimensional features onto a unified fusion feature space fdLfusion RF  .

3.3 Adaptive Proposal Search Module

Traditional dense generation-evaluation strategies prove inefficient for long-form videos. Inspired by human viewing
behaviour—specifically the cycle of “skimming through—identifying points of interest—pausing to examine in
detail”—we have designed an adaptive proposal search module. This module operates iteratively, with its core principle
being the dynamic determination of the “direction” and “step size” for the next search step based on the context
surrounding the current search position. As illustrated in Figure 5, the adaptive proposal search process emulates
intelligent human browsing behaviour during long-form video consumption. It abandons the traditional sliding window
strategy with fixed strides, instead dynamically adjusting search granularity and direction based on contextual semantic
information from the current video segment and predicted behavioural confidence. When the search pointer resides in
behaviourally sparse regions, the algorithm employs larger strides to rapidly skip irrelevant segments, enhancing
efficiency. Conversely, upon detecting regions of high behavioural confidence, it automatically switches to a
fine-grained small-step search mode. Within these zones, it densely generates proposals and performs boundary
fine-tuning. This achieves an optimal balance between efficiency and precision within lengthy lecture videos, avoiding
computational waste on irrelevant background content while ensuring the capture of fleeting or marginally defined
behavioural patterns.

Figure 5Adaptive Proposal Search Process

In each iteration i , the model maintains a current search pointer ip and observes a local context window iC
centred on a feature ip . The window's features fusionF are encoded by a small neural network ctxg applied to the
corresponding fragments from the fused features, as shown in Equation 7.

)( ictxi Cgs  (7)

Here, is denotes the current state representation.

4 EXPERIMENTS AND DISCUSSION

4.1 Experimental Setup

Regarding dataset design, as existing public datasets (such as ActivityNet and THUMOS) are unsuitable for classroom
scenarios, we have developed our own ‘Edu-Action’ dataset. This dataset comprises 500 hours of authentic classroom
videos spanning different educational stages (primary, secondary, and sixth form) and subjects (Chinese, mathematics,
English, etc.). A team of educational experts was engaged to annotate over 20,000 time intervals according to rigorous
standards. These annotations encompass ten core teaching behaviours: ‘teacher instruction’, ‘board writing’,
“questioning”, ‘individual student responses’, ‘collective student responses’, ‘group discussions’, ‘individual practice’,
‘teacher-student interaction’, and ‘student-student interaction’.
Regarding evaluation metrics, we employ the most prevalent assessment protocol within the behavioural proposal
domain: average recall across different IoU thresholds. We report average recall at the tIoU threshold set {0.5, 0.55, ...,
0.95}, calculating AR@50 and AR@100 for average proposal counts of 50 and 100 respectively. Additionally, we
output the AUC, representing the area under the recall curve across the tIoU threshold range [0.5:0.05:0.95].
In terms of implementation details, the video is downsampled to 5 frames per second. I3D, VGGish, and BERT all
utilise pre-trained weights which are fixed, with only the subsequent fusion network being fine-tuned. The Adam
optimiser is employed, with an initial learning rate of 1e-4. Training of the APS module adopts curriculum learning,
commencing with simpler videos.
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4.2 Experimental Comparison

In terms of experimental comparisons, we contrast our approach with several state-of-the-art generalised action
proposal methods, including SSN, BMN, MGG, and RTD-Net. To ensure fair evaluation, all baseline methods were
retrained on the Edu-Action dataset using the identical multimodal features provided by us, as detailed in Table 1.

Table 1 Performance Comparison of Behavioural Proposals on the Edu-Action Test Set
Mehtod Modal AUC @0.5 @0.7 @0.9
SSN[11] RGB 28.1 42.5 28.9 8.1
BMN[12] RGB 32.5 52.1 36.8 12.5
MGG[29] RGB 33.8 54.3 38.1 13.2

RTD-Net[16] RGB 35.2 56.7 40.5 14.8
BMN[12] RGB+Audio 34.9 55.8 39.4 13.7
BMN[12] RGB+Audio+Text 36.1 57.5 41.0 14.5
Ours RGB+Audio+Text​ 41.7​ 68.7​ 53.4​ 21.2

The experimental results demonstrate that our approach achieves significant and consistent superiority over all baseline
models across all evaluation metrics. Particularly under stringent metrics measuring boundary localisation accuracy, it
achieves absolute performance gains of 12.0% and 12.9% respectively compared to the strongest baseline, RTD-Net.
This conclusively demonstrates our model's distinct advantage in generating precise, high-quality boundary proposals.
It is noteworthy that while incorporating multimodal information into baseline methods yields some performance gains,
these improvements remain limited. This indicates that simple feature concatenation strategies struggle to fully exploit
the deep correlations between multimodal information. In contrast, the hierarchical attention mechanism proposed
herein achieves more effective fusion through dynamic weight allocation. Furthermore, our approach maintains a recall
rate exceeding 21%, whereas all baseline methods fall below 15%. This outcome robustly validates our model's
exceptional precision in behavioural boundary localisation, demonstrating superior alignment with actual behavioural
intervals.

4.3 Ablation Experiment

The ablation experiments aim to systematically validate the effectiveness of each core component within the model,
following the implementation process outlined below. First, building upon the complete model, we sequentially
removed or substituted specific modules. This included: - Isolating audio and text modalities to validate multimodal
necessity. Replacing hierarchical attention with simple feature concatenation to assess fusion efficacy. Ablating
intra-modal and cross-modal attention submodules to analyse their respective contributions. Substituting adaptive
search strategies with traditional fixed-step sliding windows to evaluate efficiency advantages. All comparative
experiments were conducted under identical training/validation/test dataset partitions, employing consistent
hyperparameter settings and evaluation metrics to ensure comparability. This approach precisely quantifies each
component's contribution to final performance. Specific results are presented in Table 2.

Table 2Ablation Experiment Results
Model Configuration AUC @0.5 @0.7
Complete Model 41.7​ 68.7​ 53.4​
- w/o Audio modal 38.9 64.1 48.5
- w/o Text modal 39.5 65.0 49.3
- w/o HMAF 37.2 61.5 45.7

- w/o Modal attention 40.1 66.3 51.0
- w/o Cross-modal attention 40.5 66.8 51.5

- w/o APS 35.9 59.8 43.6

Regarding the necessity of multimodality, removing either the audio or text modality resulted in a significant decline in
performance, decreasing the AUC by 2.8 and 2.2 points respectively. This demonstrates the indispensable role of
multimodal information in classroom behaviour analysis. Regarding the efficacy of the HMAF module [30],
performance plummeted when this module was replaced with simple feature concatenation, with AUC dropping from
41.7 to 37.2. This demonstrates the critical role of our proposed attention mechanism in information fusion.
Furthermore, removing either the intra-modal or cross-modal attention submodules separately also resulted in
performance degradation, indicating both are effective, with intra-modal attention playing a slightly greater role than
cross-modal attention. Regarding the effectiveness of the APS module, replacing it with a traditional fixed-step sliding
window yielded the most pronounced performance decline, with AUC dropping to 35.9, demonstrating the substantial
advantages of adaptive search strategies in enhancing both accuracy and efficiency. We also measured inference time,
where the full model achieved approximately 3.5 times faster processing compared to the sliding-window variant.
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Figure 6 Scatter Plot of Performance Metrics for Each Model Configuration in Ablation Experiments

As illustrated in Figure 6, the performance scatter plot from the ablation experiments clearly reveals the contribution of
each component to model performance and their intrinsic relationships. The complete model occupies the optimal
position with 68.7% AR@0.5 and 41.7% AUC, demonstrating the best overall performance. When the adaptive search
strategy was removed in favour of a traditional sliding window approach, performance declined most markedly,
AR@0.5 decreased to 59.8% and AUC fell to 35.9%, confirming the critical role of adaptive search in enhancing
detection efficiency and boundary accuracy. Replacing the hierarchical attention mechanism with simple feature
concatenation caused AR@0.5 drop in a to 61.5% and AUC to 37.2%, highlighting the necessity of refined multimodal
fusion. Removing either the audio or text modality individually caused varying degrees of performance degradation,
confirming the complementary value of multimodal information. The greater impact observed when the audio modality
was absent indicates that audio cues are particularly crucial for behaviour recognition in classroom settings. Notably,
performance degradation from removing intra-modal attention slightly exceeded that from cross-modal attention
removal, indicating that capturing intra-modal temporal dependencies contributes more significantly to final
performance than cross-modal alignment. These results collectively demonstrate that the model's components
synergistically enhance behaviour detection performance, with adaptive search strategies making the greatest
contribution, followed by hierarchical attention mechanisms, while multimodal information provides indispensable
complementary cues.

4.4 Discussion of Results

We conducted a case study to visualise the temporal attention weights of successful examples, as illustrated in Figure 7.
The figure depicts the visualisation of attention weights during a “teacher-question-student-answer” process. The top
section displays video frames, the middle shows audio waveforms and transcribed text, while the bottom presents
tri-modal attention weights. It is evident that at the start of the question, textual attention focuses on the word ‘why’,
while audio attention concentrates on the rising intonation. During the student's response, visual attention centres on the
student's area, audio attention shifts to the student's voice, and textual attention aligns with the content of the student's
answer. Our model successfully localises the entire interaction process.
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Figure 7 Visualisation of Temporal Attention Weights

Moreover, we have also observed instances of failure. Firstly, extremely ambiguous boundaries, such as a group
discussion that commences slowly without clear linguistic markers. Additionally, multimodal signals of extremely poor
quality, such as severe camera shake, audio containing significant noise, or entirely erroneous ASR transcriptions. These
too represent challenges that require continued attention in future work.

Figure 8 Performance Curves of Different Models at Various tIoU Thresholds

For the comparative experiments conducted in this paper, we performed a performance analysis, as detailed in Figure 8.
The figure illustrates the average recall trends across different models as the tIoU threshold varies from 0.5 to 0.9. Our
proposed model maintains a leading position across all thresholds, exhibiting the most gradual decline in performance
curves. This indicates that the generated behavioural proposals demonstrate superior boundary accuracy and robustness.
Specifically, under stringent thresholds tIoU@0.5 and @0.7, our model achieves absolute performance improvements of
12.0% and 12.9% respectively compared to the strongest baseline RTD-Net, highlighting its significant advantage in
precisely locating behavioural boundaries. Even as the threshold increases to @0.9, the proposed model maintains a
recall rate of 21.2%, substantially exceeding the baseline model's rate below 15%, further validating its capability to
capture extreme precision boundaries. This outcome stems from the hierarchical attention mechanism's dynamic fusion
of multimodal information, effectively leveraging complementary visual, auditory, and textual cues. Concurrently, the
adaptive search strategy intelligently adjusts granularity within lengthy videos, mitigating background redundancy
while enhancing detection of critical behavioural regions. This holistic approach elevates the model's performance
across varying levels of strictness.

5 CONCLUSION

This paper addressed the core challenges in temporal action proposal generation for classroom videos, namely the
extreme variation in action durations, complex semantic hierarchies, and the heterogeneous nature of multimodal
information. We proposed a novel proposal generation model centered on a Hierarchical Multimodal Attention Fusion
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(HMAF) module and an Adaptive Proposal Search (APS) strategy. Comprehensive experiments and in-depth analysis
on the collected Edu-Action dataset lead to the following principal conclusions.
First, the proposed HMAF module and APS algorithm are conclusively identified as the key drivers for the performance
superiority of our framework. The significant performance gains, evidenced by absolute improvements of 12.0% and
12.9% in AR@100 at tIoU thresholds of 0.5 and 0.7, respectively, over the strongest baseline RTD-Net, demonstrate a
substantial advancement in generating high-quality proposals with precise temporal boundaries. The model's robustness
is further highlighted by its maintained recall of over 21% at the highly stringent tIoU threshold of 0.9, significantly
surpassing all baseline methods and underscoring its exceptional capability in localizing actions with ambiguous
boundaries or short durations.
Second, the results of the ablative studies, clearly visualized via a performance scatter plot, quantitatively dissect the
contribution of each component. The Adaptive Proposal Search mechanism is confirmed to be the most critical
innovation, as its replacement with a sliding window approach resulted in the most severe performance degradation.
This underscores its indispensable role in achieving an optimal balance between efficiency and accuracy in long,
untrimmed videos. The Hierarchical Multimodal Attention Fusion module is the second most significant contributor. Its
performance gain far exceeded that of a simple feature concatenation baseline, validating the effectiveness of its
dynamic, fine-grained fusion of visual, acoustic, and linguistic cues through intra- and cross-modal attention for deep
semantic alignment and enhancement. Furthermore, the performance drop observed from removing either the audio or
text modality confirms the necessity of multimodal information, with the slightly larger impact from ablating audio
suggesting the particularly strong discriminative power of vocal and acoustic events in the classroom context.
In summary, this work not only delivers a model that significantly outperforms the state-of-the-art for classroom
behavior analysis but also, through meticulous experimentation, elucidates the critical roles and underlying mechanisms
of sophisticated multimodal fusion and intelligent search strategies for fine-grained action localization in long videos. It
provides a reliable tool for automated classroom behavior analysis in the domain of smart education and offers a
valuable framework and insights for the broader field of long-form, multimodal video understanding.
Future work will focus on model lightweighting for practical deployment, enabling online real-time processing, and
enhancing cross-scenario generalization to foster application in real-world intelligent classroom environments and
provide more powerful support for teaching analytics and assessment.
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