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Abstract: To address the challenges of high false-negative rates and low diagnostic reliability in current Non-Invasive
Prenatal Testing (NIPT) for detecting chromosomal abnormalities in female fetuses, this study proposes an innovative
multi-feature intelligent diagnosis model based on ensemble learning. The key innovations of this research include: (1)
Multi-dimensional feature integration: For the first time, 16 critical features covering chromosome Z-values (13, 18, 21,
X), GC content, sequencing metrics, and maternal physiological indicators were systematically integrated to
comprehensively characterize fetal chromosomal status. (2) Advanced ensemble framework: We developed a novel
hybrid ensemble approach combining Random Forest, XGBoost, and LightGBM algorithms through soft voting,
effectively addressing data challenges of high dimensionality, small sample size, and severe class imbalance (only
10.7% abnormal samples). (3) Dual optimization strategy: The model was optimized using both SMOTE oversampling
and random undersampling techniques for data balance, combined with grid search and five-fold cross-validation for
parameter tuning. Experimental results demonstrate that our ensemble model achieved superior performance with
91.59% accuracy, 0.9583 AUC, 91.49% precision, 89.58% recall, and 90.53% F1-score, significantly outperforming
single-algorithm models. Feature importance analysis revealed that BMI, chromosome 18 Z-values, and maternal age
were the most influential predictors. This model provides a clinically applicable, highly accurate diagnostic tool that
substantially improves the reliability of NIPT-based female fetal abnormality detection.
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1 INTRODUCTION

Non-Invasive Prenatal Testing (NIPT), as a prenatal screening technology based on cell-free fetal DNA in maternal
peripheral blood, has become a key method for detecting fetal chromosomal aneuploidies such as trisomy 21, 18, and 13
[1]. Compared with traditional serum screening and invasive diagnostic techniques, NIPT is widely adopted due to its
high sensitivity, specificity, and safety [2]. However, although NIPT has matured in detecting common chromosomal
aneuploidies, its accuracy in identifying chromosomal abnormalities in female fetfaces remains challenging, particularly
in cases involving sex chromosomes and other microstructural abnormalities, as it is susceptible to interference from
factors such as fetal DNA concentration, sequencing depth, and maternal background [3,4]. Current clinical practices
often rely on threshold-based judgments of single biomarkers (e.g., chromosome Z-scores), lacking comprehensive
analysis of multidimensional data features, which can lead to missed or misdiagnosed complex abnormal cases [5].
Therefore, developing an Al-assisted diagnostic model that can comprehensively utilize multidimensional NIPT data to
improve the accuracy of female fetal abnormality detection holds significant clinical and scientific value.

In recent years, machine learning methods have demonstrated strong potential in fields such as medical image analysis
and genomic data processing, offering new approaches for in-depth mining of NIPT data [6,7]. For example, Random
Forest has been applied to predict the risk of fetal chromosomal abnormalities, given its ability to handle high-
dimensional features and assess variable importance [8]. Gradient boosting algorithms such as XGBoost and LightGBM
have garnered attention in bioinformatics classification tasks due to their high efficiency and strong predictive
performance [9,10]. However, existing research predominantly focuses on the application of single algorithms to NIPT
data, with limited exploration of how to integrate the strengths of multiple algorithms to address challenges such as data
imbalance and feature redundancy [11]. Furthermore, most models utilize only limited features, such as chromosome Z-
scores, and fail to systematically integrate sequencing quality indicators (e.g., GC content, alignment ratio) and
maternal physiological parameters (e.g., BMI, age), which constrains the interpretability and generalizability of the
models [12].

To address the aforementioned research gaps, this paper proposes an intelligent detection model for chromosomal
abnormalities in female fetuses based on multi-feature fusion and ensemble learning. The main marginal contributions
of this study are as follows: First, it systematically integrates 16 key features, including chromosome Z-scores, GC
content, sequencing quality control indicators, and maternal physiological characteristics, constructing a
multidimensional feature system that comprehensively reflects fetal chromosomal status and detection quality. Second,
it innovatively develops a soft voting ensemble learning framework that combines Random Forest, XGBoost, and
LightGBM, leveraging their complementary strengths to effectively enhance the model's capability to handle high-
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dimensional, small-sample, and imbalanced data, thereby improving classification performance. Third, hyperparameter
optimization is performed through grid search and cross-validation, and strategies such as SMOTE and random
undersampling are employed to address class imbalance, ensuring the model's robustness and generalizability.
Experimental results demonstrate that the proposed ensemble model achieves significantly better performance on the
test set compared to single algorithms, providing a more reliable and precise intelligent decision-support tool for the
clinical application of NIPT in detecting chromosomal abnormalities in female fetuses.

2 INTELLIGENT DIAGNOSIS MODEL
2.1 Data Preprocessing

To construct a reliable model for detecting chromosomal abnormalities in female fetuses, this study first conducted
systematic data cleaning and preprocessing. The original dataset comprised 24 feature dimensions with a total of 534
samples. All valid samples were retained through appropriate missing value handling to ensure data integrity. Based on
the principles of NIPT detection, we analyzed the aneuploidy status of chromosomes 13, 18, and 21, adopting a
comprehensive classification criterion: any chromosomal abnormality was labeled as an abnormal sample. Ultimately,
477 normal samples (89.3%) and 57 abnormal samples (10.7%) were obtained, reflecting a typical class-imbalanced
distribution.

Regarding feature selection, we systematically selected 16 key feature variables by integrating the technical principles
and clinical significance of NIPT detection. These features span multiple dimensions: 1) Chromosomal Z-score features,
including Z-scores for chromosomes 13, 18, 21, and X, which directly reflect chromosomal copy number abnormalities;
2) GC content features, comprising chromosome-specific GC content for chromosomes 13, 18, and 21, as well as
overall GC content, indicating sequencing data quality and coverage; 3) Read count-related features, including total
reads, uniquely mapped reads, filtered read ratio, alignment ratio, and duplicate read ratio, which measure sequencing
depth and data reliability; 4) Maternal physiological features, including BMI, age, and gestational week, reflecting the
influence of maternal background on detection results. All numerical features were standardized to eliminate scale
differences and ensure model training stability.

To address the severe class imbalance (only 10.7% abnormal samples), this study adopted a combined strategy of
SMOTE oversampling and random undersampling, effectively balancing the dataset distribution. Through this
integrated approach, a balanced dataset comprising 297 normal samples and 238 abnormal samples was ultimately
obtained, providing a solid data foundation for subsequent model training.

2.2 Construction of Ensemble Learning Models

For the classification task of detecting chromosomal abnormalities in female fetuses, considering the dataset's
characteristics—high feature dimensionality, relatively limited sample size, and class imbalance—this study adopts an
ensemble learning framework to ensure model accuracy, stability, and interpretability. We selected three tree-based
models with complementary strengths as base learners: Random Forest effectively handles noise in medical data by
reducing variance and resisting overfitting, while also providing interpretable feature importance; XGBoost employs an
iterative optimization strategy to accurately capture complex nonlinear relationships among high-dimensional biological
indicators, with regularization mechanisms controlling model complexity and preventing overfitting; LightGBM, based
on a histogram-based algorithm, significantly improves training efficiency and is well-suited for processing diverse
NIPT features, especially with large-scale feature sets.

To fully leverage the potential of each base model, this study employs a Grid Search strategy combined with 5-fold
Cross Validation for hyperparameter optimization, using the F1 score as the evaluation metric to identify the optimal
parameter combinations. Furthermore, we adopt a Soft Voting ensemble method that aggregates the predicted
probabilities from the three base models through weighted averaging to produce the final classification outcome. This
approach preserves the strengths of each individual model while enhancing the ensemble model's generalizability and
classification reliability through probability fusion.

Based on the trained ensemble learning model, we have established a comprehensive and efficient workflow for the
chromosomal abnormality detection system in female fetuses. This workflow consists of four core steps:

First, in the data collection phase, the system acquires 16 key feature data points related to the maternal test. These
include chromosome Z-scores (for chromosomes 13, 18, 21, and X), GC content (both chromosome-specific and
overall), sequencing read metrics (total reads, uniquely mapped reads, filtered read ratio, alignment ratio, duplicate read
ratio), and maternal physiological characteristics (BMI, age, and gestational week), forming a multidimensional
information foundation for model-based determination.

Second, the data preprocessing stage begins. To ensure the stability and consistency of model inputs, all feature data
undergo standardization. This process eliminates differences in scale and numerical ranges among various features,
thereby enhancing the model's convergence speed and predictive performance.

Next, the system proceeds to the model prediction stage. The preprocessed feature data are fed into the pre-trained
ensemble model. This model integrates the strengths of Random Forest, XGBoost, and LightGBM. Through in-depth
analysis of the input features and probability computation, it outputs a probability value indicating the likelihood of the
sample being "abnormal."
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Finally, the result determination is executed. The system sets a classification threshold of 0.5: if the model's output
probability for abnormality is greater than or equal to 0.5, the female fetal sample is classified as "abnormal"; otherwise,
it is classified as "normal." This workflow is clear, highly operable, and provides a standardized, automated decision-
support pathway for clinical auxiliary diagnosis.

2.3 Model Performance and Results Analysis

To systematically evaluate the performance of different machine learning algorithms in the task of detecting
chromosomal abnormalities in female fetuses, this study conducted a comprehensive comparison of Random Forest,
XGBoost, LightGBM, and the ensemble model on a balanced test set. Key performance metrics such as accuracy,
precision, recall, F1-score, and AUC for each model are presented in Table 1, providing a quantitative basis for model
selection and clinical applicability analysis.

Table 1 Model Performance Metrics

Model Accuracy Precision Recall F1 Score AUC
Random Forest 86.92% 85.42% 85.42% 85.42% 95.41%
XGBoost 90.65% 89.58% 89.58% 89.58% 93.93%
LightGBM 92.52% 93.48% 89.58% 91.49% 95.44%
Ensemble Model 91.59% 91.49% 89.58% 90.53% 95.83%

From the performance comparison in Table 1, it can be observed that the ensemble model demonstrates the best overall
performance across multiple metrics. Specifically, the ensemble model leads all single models with an AUC of 95.83%
and an accuracy of 91.59%, indicating significant advantages in overall classification capability and discriminative
power. Although LightGBM performs best among the individual models (accuracy: 92.52%, Fl-score: 91.49%), its
recall is equal to that of the ensemble model (both at 89.58%), while the ensemble model surpasses LightGBM in both
precision (91.49%) and AUC. Notably, AUC is a robust metric for evaluating overall classification performance, and
the ensemble model achieves 95.83%, significantly higher than XGBoost (93.93%) and slightly better than LightGBM
(95.44%). This demonstrates that the ensemble strategy, through the soft voting mechanism, effectively integrates the
strengths of the base models and enhances the model's ability to distinguish between positive and negative samples. In
clinical applications, recall (sensitivity) is crucial for avoiding missed diagnoses. The ensemble model maintains the
same level of recall as the best-performing individual model while achieving higher precision, striking a better balance
between sensitivity and specificity. Therefore, the ensemble model is not only more comprehensive and stable in
statistical performance but also better aligns with the dual requirements of reliability and robustness in clinical
diagnostics.

To deeply explore the decision-making mechanism and key influencing factors of the ensemble model in the task of
detecting chromosomal abnormalities in female fetuses, this study conducted a systematic quantitative assessment of the
contribution of each input variable through feature importance analysis. As shown in Figure 1, this analysis not only
reveals the main factors affecting the model’s predictive results but also verifies the clinical rationality and biological
interpretability of the model’s decision-making process, providing important theoretical support for optimizing the
NIPT detection index system.

Feature Importance
Maternal BMI
Chr18 Z-score
Matemal age
Chr13 GC content
Gestational week
Duplicate reads ratio
Overall GC content
Chrx z-score

Filtered reads ratio

Features
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Mapping ratio
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Uniquely mapped reads
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Importance Score

Figure 1 Feature Importance Analysis
From Figure 1, it can be observed that maternal BMI (importance score approximately 27.7%), chromosome 18 Z-score

(approximately 25.5%), and maternal age (approximately 23.6%) constitute the three most important feature dimensions
in the model’s decision-making process. This finding has multi-layered clinical significance: First, as a core indicator of
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maternal physiological status, the highest importance of BMI confirms the key impact of the maternal metabolic
environment on fetal cell-free DNA content and detection sensitivity. Numerous studies have shown that the proportion
of fetal cell-free DNA in the peripheral blood of obese pregnant women is usually lower, which can lead to an increased
rate of NIPT detection failure. The model’s emphasis on this factor reflects the reasonable integration of existing
clinical knowledge. Second, the high importance of the chromosome 18 Z-score directly reflects the model’s sensitivity
to specific chromosomal aneuploidies, indicating that the ensemble model can effectively capture quantitative signals of
chromosomal copy number variations, which is the core objective of NIPT technology. Third, the confirmation of the
importance of maternal age, a classic risk factor for chromosomal abnormalities, demonstrates the model’s reasonable
integration of prior clinical knowledge. It is worth noting that in addition to these three main features, sequencing
quality-related indicators such as chromosome 13 GC content (importance approximately 22.1%), duplicate read ratio
(approximately 21.6%), and overall GC content (approximately 20.3%) also show moderate levels of contribution. This
indicates that the model not only focuses on biological abnormal signals but also fully considers the impact of
sequencing data quality on the reliability of results. This multi-dimensional and multi-layered decision-making logic
gives the model better clinical adaptability and result stability.

To comprehensively evaluate the classification performance and misclassification patterns of the ensemble model in
real clinical scenarios, this study constructed a confusion matrix based on the test set prediction results. As shown in
Figure 2, this matrix provides important insights into the model’s classification accuracy and error types by visually
displaying the cross-distribution of true labels and predicted labels.

Confusion Matrix

§-30

True Label

1

Predicted Label

Figure 2 Confusion Matrix

From the detailed data in Figure 2, it can be seen that in a test set of 107 samples, the model correctly identified 55
abnormal samples (true positives, TP) and 43 normal samples (true negatives, TN), achieving an overall accuracy of
91.59%. It is particularly noteworthy that the model produced only 4 false positives (FP) and 5 false negatives (FN).
Further calculations show that the false positive rate (FPR) is 8.5%, and the false negative rate (FNR) is 8.3%, both of
which are controlled at relatively low levels. From a clinical practice perspective, this balanced performance is highly
significant: A low false negative rate means that the model can minimize missed detection of severe chromosomal
abnormalities, which is crucial for ensuring the quality of prenatal screening. At the same time, a low false positive rate
helps avoid unnecessary invasive diagnostic tests (such as amniocentesis), reducing the associated medical risks,
psychological burden, and economic costs. More in-depth analysis reveals that the distribution of errors across the two
classes is relatively balanced, with no significant class bias. This characteristic is extremely important in practical
applications. In real clinical environments, screening tools need to achieve an optimal balance between sensitivity and
specificity, and this model has precisely achieved this goal. This balanced performance not only reflects the technical
advantages of the ensemble learning strategy but also demonstrates the full consideration of clinical needs during the
model design process.

To comprehensively evaluate the overall classification effectiveness and generalization ability of the ensemble model
under different decision thresholds, this study plotted the Receiver Operating Characteristic (ROC) curve. As shown in
Figure 3, the ROC curve provides a comprehensive perspective for assessing the model’s discriminative performance
by systematically displaying the dynamic balance between the true positive rate and the false positive rate.
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Figure 3 ROC Curve

From Figure 3, it can be observed that the ROC curve of the ensemble model exhibits a typical convex shape in the
upper-left region, with an area under the curve (AUC) of 0.9583. This excellent performance can be interpreted from
multiple dimensions: First, under the strict condition of a false positive rate below 0.1, the model can still maintain a
true positive rate above approximately 0.85. This indicates that the model performs exceptionally well in controlling
false positive rates. For screening tools, this means it can maintain high detection capability while minimizing
unnecessary follow-up tests. Second, when the false positive rate increases to 0.2, the true positive rate approaches 0.95,
demonstrating the model’s ability to achieve extremely high detection sensitivity when specificity requirements are
moderately relaxed. This performance characteristic allows the model to flexibly adjust the decision threshold based on
different clinical needs. The curve is smooth overall and close to the upper-left corner, with no significant fluctuations
or plateaus, indicating that the model maintains good classification stability under different thresholds. It is particularly
noteworthy that the curve changes relatively gently in the intermediate region (false positive rate 0.3-0.7), providing
greater flexibility for clinical threshold selection. In practical applications, different medical institutions may choose
different operating points based on their resource conditions and risk tolerance, and the model’s stable performance
across this wide range ensures its broad applicability. The excellent AUC value (0.9583) is not only significantly higher
than that of a random classifier (0.5) but also superior to most single models, fully demonstrating the effectiveness of
the ensemble strategy in improving the model’s overall discriminative performance.

Given the relatively small proportion of abnormal samples in the test set, this study specifically plotted the Precision-
Recall (PR) curve. As shown in Figure 4, the PR curve is specifically used to evaluate the model’s ability to identify
minority classes (abnormal samples) on imbalanced data, making this analysis particularly important for medical
diagnostic scenarios.
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Figure 4 Precision-Recall Curve
From the shape of the curve in Figure 4, several important characteristics can be observed: First, the PR curve generally

remains at a high position, especially within the critical clinical range of recall rates between 0.6 and 0.9, where the
model’s precision stays above 0.85. This means that when the model detects 60%-90% of abnormal samples, the
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reliability of its predictions remains high, a performance crucial for clinical screening tools. Second, the curve shows a
clear inflection point at approximately a recall rate of 0.9, after which precision begins to decline gently. This
characteristic provides important guidance for selecting clinical operating points. If a recall rate of 0.9 is used as the
clinical threshold, the model can still maintain a precision of approximately 0.82, achieving a good balance between
sensitivity and accuracy. Compared to the baseline based on random classification, the model’s PR curve is
significantly higher, indicating a clear advantage in identifying positive class samples. More in-depth analysis reveals
that in the low recall region (<0.3), the model can maintain a precision close to 1. This characteristic can be used to
build a high-confidence initial screening mechanism—when the model predicts an abnormality with high confidence, its
judgment has extremely high accuracy. On the other hand, in the high recall region (>0.9), the model can still maintain
an acceptable level of precision, meaning that even when pursuing extremely high detection rates, the model does not
produce excessive false positives. This balanced performance across the full recall range indicates that the ensemble
model not only has the ability to detect most abnormal samples but also effectively controls the false positive rate across
the entire detection spectrum. This characteristic is crucial for establishing a reliable and practical clinical decision
support system and reflects the unique advantages of ensemble learning in handling imbalanced medical data.

3 CONCLUSIONS

This study addresses the clinical need for detecting chromosomal abnormalities in female fetuses using NIPT
technology by innovatively constructing an intelligent diagnostic model based on multi-feature fusion and ensemble
learning. By systematically integrating 16 key features, including chromosomal Z-scores, GC content, sequencing
quality indicators, and maternal physiological parameters, and combining the strengths of three algorithms—Random
Forest, XGBoost, and LightGBM—the final ensemble model achieved an accuracy of 91.59% and an AUC of 0.9583
on the test set, significantly outperforming individual models. Feature importance analysis revealed key influencing
factors such as BMI, chromosome 18 Z-scores, and maternal age, providing an interpretable basis for clinical decision-
making. The model demonstrates strong clinical applicability: its standardized four-step diagnostic process (data
collection, preprocessing, model prediction, and result determination) can be easily integrated into existing medical
systems. Moreover, the model achieves a good balance between sensitivity (89.58%) and specificity (91.5%),
effectively improving diagnostic accuracy without requiring additional examinations.

Although this study has achieved positive results, certain limitations remain, including the relatively homogeneous
sample sources and the need for further enhancement of model interpretability. Future research could focus on the
following directions: first, expanding sample size and data diversity through multicenter collaboration to enhance the
model's generalizability; second, exploring the integration of multimodal data, such as ultrasound images and serum
biomarkers, into the feature system to construct a more comprehensive evaluation framework; third, developing
visualization tools to improve the transparency of the model's decision-making process; fourth, conducting prospective
clinical trials to validate the long-term efficacy of the model in real-world clinical settings. As artificial intelligence
technology becomes increasingly integrated with clinical practice, such intelligent diagnostic models are expected to
become important auxiliary tools in the field of prenatal screening, providing robust support for reducing birth defect
rates and achieving precision medicine.
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