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Abstract: To address the challenges of limited modulation bandwidth and nonlinear channel impairments in low-power
visible light communication (VLC) systems, this paper proposes a hardware-software co-designed adaptive learning
equalization scheme. At the physical layer, a hardware pre-equalization circuit is designed to compensate for Light
Emitting Diode (LED) high-frequency attenuation, thereby expanding the system's physical bandwidth. At the
algorithmic layer, an adaptive gradient descent learning algorithm arctan-softsign variable-step least mean square (A-
SVSLMS) based on the softsign activation function is proposed. This algorithm leverages the nonlinear mapping
mechanism between the step size factor and the error gradient to achieve dynamic optimization of weight updates,
effectively resolving the challenge faced by traditional algorithms in balancing convergence speed and steady-state
accuracy. Experimental results demonstrate that under a 0.06 W light source, the system's -3 dB bandwidth increases
from 1.6 MHz to 13.5 MHz. Compared to traditional LMS algorithms, the proposed algorithm exhibits faster learning
rates and enhanced robustness, successfully achieving 2 Mbps error-free transmission at a 0.55 m distance. This
validates the application potential of lightweight intelligent algorithms in resource-constrained devices.
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1 INTRODUCTION

With the evolution of sixth-generation mobile communications and Internet of Things (IoT) technologies, visible light
communication (VLC) has emerged as a key solution for indoor access due to its abundant spectrum resources,
resistance to electromagnetic interference, and eco-friendly low-power advantages. However, in practical low-power
applications such as smart homes and sensor networks, cost and energy efficiency constraints often limit signal sources
to commercial Light Emitting Diode (LED) operating at the microwatt level. The inherently high junction capacitance
of such devices results in extremely narrow modulation bandwidth, causing severe Inter Symbol Interference (ISI).
Simultaneously, the extremely low transmission power degrades the signal-to-noise ratio (SNR) at the receiver, leading
to strong nonlinearity and random time-varying characteristics in the channel.
To overcome these physical limitations, existing research primarily focuses on hardware compensation and algorithmic
equalization. While hardware pre-equalization techniques can expand bandwidth through analog filtering, purely
hardware-based approaches struggle to dynamically adapt to random channel fluctuations. At the signal processing
level, computational intelligence techniques have been widely introduced to counter nonlinear distortions. Equalizers
based on deep neural networks (DNNs) offer high accuracy but suffer from massive parameter scales and computational
overhead, making them unsuitable for resource-constrained IoT terminals. Traditional least mean square (LMS)
algorithms feature low computational complexity, yet their fixed-step mechanism faces trade-offs between convergence
speed and steady-state accuracy, hindering effective tracking of nonlinear channels in low-light environments.
In response, this paper proposes a hardware-software co-optimized intelligent equalization scheme for low-power VLC
systems. Key contributions include:
(1) Hardware pre-equalization circuit design: addressing bandwidth constraints, an active feedback-based high-pass
filter circuit compensates high-frequency attenuation, successfully expanding the system -3 dB bandwidth from 1.6
MHz to 13.5 MHz.
(2) Softsign-based adaptive learning algorithm arctan-softsign variable-step least mean square (A-SVSLMS): To
achieve intelligent tracking with low computational overhead, this paper proposes an improved gradient descent
algorithm. Utilizing the softsign activation function, this algorithm constructs a nonlinear mapping mechanism between
the step factor and error, enabling dynamic optimization of weight updates.

2 RELATED WORK

Enhancing the transmission performance of VLC systems primarily involves two dimensions: hardware bandwidth
expansion and digital algorithm equalization.
In their review on 6G VLC technology, Chi N et al. profoundly pointed out that the large junction capacitance of
commercial light-emitting diodes severely limits their modulation bandwidth, constituting a core obstacle restricting
system communication rates. Simultaneously, complex channel environments pose significant challenges to signal
integrity [1]. To overcome this physical limitation, the academic community initially focused on hardware pre-
equalization techniques at the transmitter end, aiming to compensate for high-frequency signal attenuation through
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circuit design. Bostanoglu M et al. established comprehensive channel and device models for full-featured VLC
systems, designing an efficient pre-equalizer based on these models. Experiments demonstrated that this approach
significantly enhances the system's modulation bandwidth and transmission stability under real-world operating
conditions [2]. To pursue even higher transmission rates, Zhang R et al. proposed a low-complexity pre-equalizer circuit
design. By optimizing the analog circuit structure, this approach successfully supported VLC system bandwidths up to
1.5 GHz. It maintained low hardware implementation costs while significantly expanding VLC's application potential in
high-frequency bands [3]. Subsequently, Ramadhan M A et al. delved into the specific engineering implementation
challenges of pre-equalizers. Within an intelligent signal processing framework, they designed and implemented
dedicated pre-equalization hardware for visible light communication. Their work validated the effectiveness of precise
frequency-domain compensation in eliminating intersymbol interference (ISI), providing valuable experimental data
support for subsequent hardware optimization [4].
Although simple hardware circuits can effectively expand bandwidth, their performance is often constrained by the
degree of matching between model accuracy and system dynamic characteristics. Kisacik R et al. found that the
traditional first-order low-pass LED model exhibits significant errors when describing high-frequency responses.
Consequently, they proposed a novel LED response model and applied it to the parameter design of pre-equalizers. This
approach significantly improved the equalizer's fitting accuracy to the actual physical characteristics of LEDs, thereby
achieving superior signal recovery performance [5]. Building upon this, to address more complex channel environments
and enable real-time processing, Khawatmi A et al. recently proposed a hybrid equalization scheme combining
hardware and software. This approach employs a hardware pre-equalizer at the transmitter for coarse compensation,
combined with an LMS adaptive post-equalization algorithm at the receiver for fine-tuning. It successfully achieved a
real-time transmission rate of 500 Mb/s over a single channel, demonstrating the advantages of the “pre-equalization +
post-equalization” cooperative architecture in mitigating residual ISI [6]. As VLC systems evolve toward multi-input
multi-output (MIMO) and higher-order modulation schemes, the application scenarios for equalization techniques
become increasingly complex. Galvao L G et al. investigated equalization strategies for bandwidth-constrained VLC
systems under MIMO architectures, specifically focusing on multi-band carrier-free amplitude-phase modulation (m-
CAP). By deploying specialized equalization algorithms at the receiver, they effectively suppressed crosstalk between
MIMO channels and signal distortion caused by higher-order modulation, offering new insights for enhancing system
spectral efficiency [7].
However, as communication rates continue to increase, nonlinear distortion in LEDs and nonlinear channel impairments
have gradually become the dominant factors limiting system performance, rendering traditional linear equalization
techniques inadequate. Miao P et al. introduced deep learning techniques, leveraging the powerful nonlinear fitting
capabilities of deep neural networks to address complex impairments in indoor VLC channels. Experiments
demonstrated that deep learning-based equalizers significantly outperform traditional methods in reducing bit error rates
(BER), particularly excelling in handling nonlinear distortion [8]. Concurrently, researchers have begun re-examining
the potential impact of pre-equalization techniques on SNR. Zhou Z et al. conducted an in-depth analysis of the impact
of analog and digital pre-emphasis techniques on the SNR of bandwidth-constrained optical transceivers. They pointed
out that while pre-emphasis enhances high-frequency components, it may also amplify high-frequency noise. Therefore,
an optimal balance must be found between bandwidth expansion and SNR degradation. This theoretical analysis
provides important guiding principles for selecting equalization strategies [9]. To balance computational complexity
and nonlinear compensation performance, Tian D et al. proposed a Volterra series-assisted neural network equalizer.
This approach combines the strengths of Volterra series in handling nonlinear memory effects with the feature
extraction capabilities of neural networks, constructing an efficient composite equalization structure. It effectively
compensates for channel impairments in VLC systems while avoiding the excessive computational overhead associated
with using deep neural networks alone [10].
In summary, existing single approaches struggle to simultaneously satisfy the multiple constraints of low power
consumption, low complexity, and high robustness. Therefore, this paper proposes a hardware-software co-optimization
scheme. Building upon hardware circuitry to overcome physical bandwidth limitations, it introduces a softsign function
to enhance the LMS step size mechanism. This aims to achieve intelligent adaptive tracking of nonlinear channels at an
extremely low computational cost.

3 SYSTEM DESIGN AND ALGORITHM RESEARCH

Addressing the challenges of bandwidth limitations and severe nonlinear distortion in low-power LEDs, a single
approach struggles to balance both speed and reliability. In light of this, this chapter proposes a hardware-software co-
optimization strategy. First, an active feedback pre-equalization circuit is designed to expand the physical bandwidth
through hardware circuit design. Second, an adaptive learning algorithm A-SVSLMS based on the softsign function is
introduced, leveraging intelligent gradient optimization to enhance the system's decision accuracy and robustness.

3.1 Hardware Circuit Design

This paper designs an active equalization circuit. The equalizer features high-frequency amplification to compensate for
high-frequency components, thereby extending the -3 dB bandwidth of the LED. The pre-equalization circuit for visible
light communication designed in this paper is shown in Figure 1. The circuit incorporates an RC passive high-pass



Nonlinear channel equalization and adaptive learning methods for low-power VLC systems

Volume 8, Issue 1, Pp 25-31, 2026

27

filter, constructed by connecting capacitor C₁ and resistor R₁ in parallel, then in series with load resistor R₂. The
amplification stage employs a low-distortion voltage-feedback operational amplifier (OPA657) to form a voltage-series
feedback circuit. The signal enters the amplifier through the non-inverting input, preserving the input signal's phase.
The OPA657 achieves a gain-bandwidth product of 1.6 GHz, amplifying the effective signal and enhancing the LED's
modulation index.
The ratio of the output to the input of the above circuit yields the frequency response of the equalization circuit as given
by Equation 1.
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Figure 1 Schematic Diagram of RC Equalization Circuit
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The amplitude response of the pre-emphasis circuit can be theoretically calculated using Equation 1. The equation for
the -3dB cutoff frequency is given by Equation 2.
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The transmitted signal is processed using the aforementioned equalization circuit, and the LED operates within its linear
region via a bias circuit. By measuring the LED's output amplitude at each frequency point, the frequency response is
obtained as shown in Figure 2. As shown in Figure 2, the frequency response of the equalized LED exhibits an initial
rise followed by a decrease. Using the maximum amplitude of the received signal frequency as the reference, the LED's
-3 dB bandwidth is determined to be 13.5 MHz. The introduction of the equalization circuit significantly broadens the
LED's effective modulation bandwidth, providing a solid foundation for achieving higher data rates and enhanced
reliability in VLC systems under low-light conditions.

Figure 2Amplitude Frequency Response Curve of LED after Equalization

3.2 Algorithm Research

Although hardware equalization technology can broaden system bandwidth, inter-symbol interference arising from
imperfect channel characteristics remains the primary factor limiting communication rates and increasing BER in low-
power LED-based VLC systems. Single hardware compensation struggles to maintain stable decision performance.
Therefore, to enhance system performance, adopting adaptive equalization techniques based on computational
intelligence at the receiver is indispensable. By dynamically adjusting weighting coefficients, these equalization
techniques can effectively mitigate signal distortion caused by imperfect channel characteristics.
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The adaptive equalization algorithm dynamically adjusts the tap coefficients of the equalizer based on channel
characteristics. The filter update equation in this algorithm is given by Equation 3.

1( 1) ( ) ( )
2
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where w is the withdrawal coefficient, n is the iteration count, and ( )J n is the unbiased gradient vector.

Assuming the output of the filter at time n is
^
( )d n , and the desired signal at that time is ( )d n , then the error signal

( )e n can be expressed as Equation 4.
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The cost function ( )J n can be expressed as Equation 5
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Among them ( )x n is the input signal for the transmitter.
Therefore, the updated equation for the new filter coefficients is given by Equation 7.

( 1) ( ) ( ) ( )w n w n e n x n   (7)
When the step size  is large, the filter weight adjustment rate is fast, enabling rapid algorithm convergence but
potentially leading to significant steady-state error or even divergence. When the step size is small, the algorithm
converges more slowly but exhibits minimal steady-state error and greater system stability.
Since the convergence speed and steady-state error of the LMS algorithm are closely related to the step size factor, a
fixed step size factor struggles to balance both aspects. Therefore, variable-step-size LMS algorithms were proposed.
This paper employs the softsign function to adjust the step size and error according to Equation 8.
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The softsign function lacks exponential operations, resulting in significantly lower computational complexity compared
to the Sigmoid function, making it highly hardware-friendly for implementation. The A-SVSLMS proposed in this
paper introduces nonlinear compression via the inverse tangent function, thereby establishing the relationship between
the step size  and the convergence error ( )e n . The A-SVSLMS equalization algorithm limits the step size during
large convergence errors while finely adjusting the step size during small convergence errors. This achieves a balance
between convergence speed and steady-state error, stabilizing the steady-state error after convergence. The specific
form of the function is given by Equation 9.
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To obtain suitable parameters, we analyzed the convergence characteristics and mean squared error performance of the
algorithm under different parameter settings. Simulation results for varying values of  and  are shown in Figures 3
and 4.

Figure 3 Convergence Curves of A-SVSLMS Algorithm under Different β Conditions



Nonlinear channel equalization and adaptive learning methods for low-power VLC systems

Volume 8, Issue 1, Pp 25-31, 2026

29

Figure 4 Convergence Curves of A-SVSLMS Algorithm under Different  Conditions

As shown in Figure 3, when 0.5  , for different values of  , the convergence speed increases as the value of 
decreases. This is due to larger step sizes during convergence. When  is set to 0.5 and 1, the convergence speeds of
the algorithms are similar. As shown in Figure 4, when 1  , with different values of  , the larger the value of  , the
larger the step size becomes. While accelerating the convergence speed, it also increases the mean squared error.
Therefore, in this channel environment, setting  to 0.5 and  to 1 achieves a balance between algorithm convergence
speed and steady-state error. The algorithm converges after 700 iterations.

4 SYSTEM SETUP AND EXPERIMENTAL ANALYSIS

The VLC system block diagram constructed in this paper is shown in Figure 5.

Figure 5 Experimental System Block Diagram

The experimental procedure and parameter settings are as follows: First, a pseudorandom sequence On-Off Keying
(OOK) baseband signal is generated using MATLAB. The signal generator is controlled via SCPI commands to drive
the pre-equalized LED transmitter. At the receiver, a photodetector and oscilloscope are used to capture the signal, and
MATLAB is employed for equalization, demodulation, and BER calculation. To validate the performance of the
proposed algorithm, this study compares the LMS algorithm, normalized least mean squares (NLMS) algorithm,
sigmoid variable step least mean squares (SVSLMS) algorithm, and the proposed A-SVSLMS algorithm at different
distances. The system BER performance comparison results are shown in Figure 6.

Figure 6 Comparison of BER at Different Distances

As shown in Figure 6, the error rate performance of the equalized system consistently outperforms that of the
unequalized system. At a distance of 0.55 m, after processing with both the LMS equalization algorithm and the A-
SVSLMS equalization algorithm, the system error rate reaches zero, achieving error-free transmission at this distance.
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However, since the LMS algorithm employs a fixed step size that cannot be adjusted based on the convergence error, its
adaptability to the system is relatively poor. At a communication distance of 0.75 m, the pre-equalization system's BER
is 29.8 10 . After processing with the A-SVSLMS equalization algorithm, the system's BER decreases to 21.8 10 .
The error rate has been reduced to 18% of the original value.
This paper evaluates the convergence curves of different equalization methods at a communication distance of 0.75 m,
as shown in Figure 7.

Figure 7 Convergence Curves of Different Equalization Algorithms at 0.75 m

Based on the performance of several equalization algorithms shown in Figure 7, it can be observed that the LMS
algorithm exhibits the slowest convergence rate. Although the NLMS algorithm achieves improved convergence speed,
it results in a larger steady-state error after convergence. In contrast, both the SVSLMS and A-SVSLMS equalization
algorithms demonstrate faster convergence characteristics. The A-SVSLMS algorithm proposed in this paper exhibits
the most stable mean square error (MSE) after convergence. This stability arises from the smaller step sizes adopted in
the later stages of the algorithm, which effectively reduce the MSE. Overall, as distance increases, the optical signal at
the receiver weakens, leading to a continuous rise in the system BER. Compared to other equalization algorithms, the A
-SVSLMS equalization algorithm delivers the optimal BER performance, significantly enhancing the system's
interference resistance under low-light conditions.

5 CONCLUSIONS

To address the challenges of limited modulation bandwidth and nonlinear distortion in low-power VLC systems, this
paper proposes a hardware-software co-optimized intelligent equalization scheme. At the hardware level, an active pre-
equalization drive circuit is designed to compensate for LED high-frequency attenuation, successfully expanding the
system's -3 dB bandwidth from 1.6 MHz to 13.5 MHz and effectively overcoming the physical limitations of the
components. At the algorithmic level, an A-SVSLMS adaptive equalization algorithm based on nonlinear mapping is
introduced. This resolves the trade-off between convergence speed and steady-state accuracy inherent in traditional
fixed-step algorithms, significantly enhancing signal decision robustness in low-light environments. Experimental
results demonstrate that the system achieves error-free transmission of 2 Mbps data over a 0.55 m distance under a 0.06
W weak light source, validating the effectiveness of the proposed design and algorithm for low-power communication.
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