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Abstract: This study presents a quadrotor UAV tracking control algorithm that addresses the issues of parameter
uncertainty and external disturbances during trajectory tracking. The algorithm combines the Q-Learning reinforcement
learning algorithm with a nonsingular terminal sliding mode controller. Firstly, a four-rotor UAV model based on
tracking error is defined, and the coupling and external interference between channels are converted into lumped
interference. Extended state observers are designed for estimation and compensation of lumped interference by the
outer loop position subsystem and the inner loop attitude subsystem. At the same time, a fast non-singular terminal
sliding mode UAV controller is constructed, which includes an outer loop position controller and an inner loop attitude
controller. Then, a Q-learning algorithm based on fuzzy strategy is proposed to realize the adaptive adjustment of the
key parameters of the controller and the observer. By designing the reward function, the Q values of the UAV under
different flight states are iteratively optimized and the Q table is constantly updated. Finally, the trained Q table is used
for drone control. The algorithm can not only save the complicated process of manual parameter adjustment, but also
realize the adaptive adjustment of key parameters in the face of different flight environments and flight states. The
simulation and comparison experiments show that the proposed algorithm has a higher degree of fit with the reference
trajectory in the trajectory tracking control process and has good robustness.

Keywords: Quadrotor UAV; Trajectory tracking control; Fast nonsingular terminal sliding mode; Reinforcement
learning; Extended state observer

1 INTRODUCTION

Four-rotor UAVs are widely used in both military and civilian fields due to their low cost, vertical take-off capability,
and high flexibility [1-2]. However, their highly nonlinear and underactuated nature makes precise trajectory tracking
challenging under external disturbances, parameter variations, and unmodeled dynamics [3-4].

Various control methods have been developed to address these issues. PID-based controllers are simple but lack
robustness against strong disturbances [5-6]. Sliding mode control (SMC) offers better performance in nonlinear and
uncertain systems: fuzzy SMC improves adaptability [7], while non-singular terminal SMC reduces chattering but with
slower convergence [8]. Predictive SMC with disturbance observers further enhances robustness [9]. Active disturbance
rejection control (ADRC) has also been widely adopted for its ability to actively suppress disturbances [10], with
improvements such as fixed-time SMC and extended state observers (ESO) providing faster convergence and stronger
anti-disturbance capabilities [11-12]. Nevertheless, most methods still rely heavily on manual parameter tuning, which
is experience-dependent and condition-sensitive [13-14].

Reinforcement learning (RL), especially Q-learning, offers a promising way to achieve adaptive control through
autonomous learning [15-16]. In this paper, a Q-learning-based RL algorithm is designed to optimize fast non-singular
terminal sliding mode control (FNTSMC) for trajectory tracking. The main contributions are: An error-based FNTSMC
is developed for the outer-loop position and inner-loop attitude subsystems, enabling faster and more accurate
convergence than conventional methods [8]; Coupling and external disturbances are treated as lumped disturbances and
compensated via an extended state observer, significantly improving anti-disturbance performance compared to existing
designs [9]; Controller and observer parameters are adaptively tuned using Q-learning, which reduces reliance on prior
knowledge, avoids local optima, and is easy to implement [12].

2 FOUR-ROTOR UAV MODELING AND PROBLEM DESCRIPTION

Quadrotor UAVs are underactuated nonlinear systems controlled by four motor speeds. The model is established using
ground and body coordinate systems, with their transformation shown in Figure 1.
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Figure 1 Coordinate Conversion and Rotor Structure of Four-Rotor UAV

Since UAV modeling has been well established in literature [5], this paper focuses on controller design without
repeating the modeling process. The following assumptions are made to simplify the dynamic modeling and controller
design: The body is rigid, symmetrical, and its geometric center coincides with the center of mass. The quadrotor
cancels the gyroscopic effect through the counter-rotation of adjacent motors. Disturbances in the system are bounded,

slowly varying, and satisfy tlimdi=0,i=1,2,--~ ,6.
The UAV dynamics model is established by Newton-Euler equation [9-10]:
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Formula (1) represents the position subsystem, and formula (2) represents the attitude subsystem.x, yandz are the body
position states of the UAV.¢ Roll Angle, 6 pitch Angle, y yaw Angle are the three Euler angles of UAV respectively.Uy,
U,, UsandU,are the control input torques of the 4 brushless motors respectively. mis the mass of the drone. g is the
gravitational acceleration. Iy, Iy, I, are the moment of inertia of the X,,, Yy, Z;, axis respectively.l is the distance from the
center of the propeller to the center of gravity of the UAV. K; is the coefficient of air resistance.d; is the external
disturbance of the system, wherei € {1,2,3,4,5,6}.
Since the UAV has only four actual control inputs, the amount of control is less than the system state variable. To
achieve the tracking of expectedx,, y,andz,, a virtual control quantity is introduced into the position subsystem of
formula (1) :
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In this paper, given y,,the expected attitude Angled,, 0, and expected lift forceF, obtained by solving equation (3) are:
m
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Ucos Yr Uy Sin Wy yF
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From formula (1) to formula (4), it can be seen that the UAV can track the target trajectory by changing the position and
attitude Angle. Based on this, the UAV tracking problem considering internal parameter uncertainty and external
interference can be described as follows: Design a Q-learning reinforcement learning and sliding mode control
algorithm to make the system state variable [X,y,z,y]" asymptotically converge to the desired signal [X,,y,.Z.y,]Tin a
finite time.

3 CONTROL ALGORITHM DESIGN AND STABILITY ANALYSIS
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The UAV trajectory tracking control algorithm is composed of many parts. In this section, we first designed an
extended state observer for position and attitude loops respectively to estimate lumped interference, and then designed
an error-based fast non-singular terminal sliding mode controller for position and attitude subsystems respectively
according to the obtained total disturbance estimates. Finally, Q-learning reinforcement learning algorithm was
designed to realize adaptive adjustment of key parameters of the controller and observer. Realize the active disturbance
rejection tracking of UAV in complex environment. The control structure is shown in Figure 2.
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Figure 2 Four-Rotor UAV Control Structure

3.1 Design of Position and Attitude Extended State Observer

Firstly, the 3D position tracking error and attitude Angle tracking error of UAV are defined as:

&e, &X—X,
&ey | =&y,
&e, &z-7,
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where,®=[¢,0,y]"is the attitude Angle,®,=[0,.0,,y,] is the desired attitude Angle.

According to formula (1) and (3), the position error model is obtained by bringing into formula (5) :
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According to equations (2) and (6), the attitude Angle tracking error model is as follows:
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In order to estimate the external interference d; ,d, and d; of the position tracking error model (7), the extended state

observer of the position subsystem is designed:
K
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Where, vy, , Vy,, Vy,, Vy,, V5, » V5, are the state variable of the position extended state observer,l, , 1

the position extended state observer gain,d; , d,, d; are the estimates of external interference.
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In order to estimate the lumped disturbance D;, D, and D5 ,of the attitude subsystem, the following extended state
observer for the attitude Angle tracking error model (8) is designed:
&vy1=kpy 1€ Kp Vo1 HVg TB U
&V =Kpr€y KV
&D =y,
&vy=ky3e97k,
&vgr=kp4e9Kpavor (10)
&Dyr=vyy
&vy17Kys€yKpsVy 1 Vo TBsus

3Ve1 Vg tBouy

&Vw2:kp6ew7kpév\ul
&D3:V‘V2
y1 » Vi, are the state variable of the attitude extended state observer,ky, , k,, Ky, Ky, Ky,
k,are the observer gain,D; , D,, D5 are the estimates of the lumped interference of the attitude subsystem.

Where, vy, , Vg,, Vo, Vo, V

3.2 Fast Non-Singular Terminal Sliding Mode Controller Design

The traditional sliding mode control cannot make the system error converge in a finite time, which obviously cannot
meet the control requirements of the UAV system. Therefore, the terminal sliding mode control is proposed based on it,
which solves the problem that the system error can only converge gradually. In order to further solve the problem of
possible strange phenomena, the following non-singular terminal sliding mode surface is designed:

- ! Pifd; s _
Si—ei+ﬁei A=X,Y,2,0,0,y (11)
1

where, ;>0,p;, g;are positive odd numbers.

It can be seen from the above formula that the non-singular terminal sliding mode surface is composed of a nonlinear
function, the existence of which improves the velocity of the system error in the approach stage. When the system error
is approaching, the convergence rate is faster. After the system error reaches the sliding mode surface, the convergence
rate of the non-singular terminal sliding mode surface composed of nonlinear functions is slower than that of the linear
function. Therefore, a fast term is added to ensure that the non-singular terminal sliding mode control strategy maintains
a faster global speed during convergence:

g Logihi L pifgi .
Si—ei+;iei‘ ‘+Eei‘ Li=X,y,z, 0,0,y (12)

Where,0,>0, B;>0,g;, h;, p;, q; are positive odd numbers, the following conditions are met:p—f<§, 1<p—f<2.

di i di
To facilitate writing, the virtual control quantity of the attitude subsystem is redefined u¢=B1u%, uy=B,ul, uw=B3u§.
Theorem 1 According to the position subsystem tracking error model (7) and attitude Angle tracking error model (8),
the following fast non-singular terminal sliding mode controller is designed:
il 20 /a 1 i i .
u=—P;" &[eiz e (H_ ' % ' e?]/h] 1)] +Mi—k;; - S;n'/n'_kiz‘ sign(S;) (13)
pbi 04 i
The tracking errors e, €y, €,, €, €, €, of the position subsystem and the attitude subsystem can be guaranteed to
converge in finite time, where:
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3.3 Stability Analysis of Closed Loop System

If theorem 1 is proved, the attitude Angle tracking error model equation (8) is introduced from the fast non-singular
terminal sliding mode controller model equation (13), and the control input torques U;, U,, Uyand U, of the four
brushless motors can be obtained after deduction to control the motor speed, which can ensure that the tracking error of
the UAV converges to 0 in a finite time. That is, the state variable[x,y,z,y]"converges to the desired signal [X,,y,Z.,y,]".
Since the controller designed in this paper has the same structure in the position control loop and the attitude control
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loop, the stability of other channel controllers can be shown by proving the stability of any channel of any control loop
controller. Taking the y channel of UAV yaw Angle as an example, the stability of the controller designed in this paper
is proved.

(1) It is proved that the tracking error of the system can reach the sliding mode surface in a limited time.

The controller (13) is substituted into the attitude Angle tracking error model (8), and the closed-loop system error
dynamics are obtained:

gy/hy~1
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WZ_% ey Py 1+waw—h —kyi- SWW/ "—kyo - sign(S,)tD;—D; (15)
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where, according to formula (12), py,, g, are positive odd andl<%<2, according to formula (13),m, andn,, also are
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from equation (18), it can be obtained:
V, <€V (21)

this proves that V,, can converge in a finite time, and thus S,, can converge to 0 in a finite time.

(2) It is proved that the tracking error converges in finite time after reaching the sliding mode surface.

Assuming that when t=ty, the tracking error ofy control loop reaches the sliding mode surface, then when t>t,, the
tracking error of y control loop dynamically changes from equation (12) to:

y / 1 gym \ P
__Gy/Py  nAy/Py 1+_eg\v vy 22
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from the above formula:
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if we integrate both sides of equation (23), we get:
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where,1-q,,/p,>0,¢, (t;+A)Pv %Py decreases monotonously withAt. Whene,, (t,+t,,)Pv~%Pv=0, time t,, satisfies:
. (t )I*qw/pw 1 Qy/Py
twﬁpws—ew — (26)
Py~ Ay B\y

that is, y channel tracking error €,, can converge to 0 in a finite time.

To sum up, the stability of other channel controllers can be obtained according to the same proof process, which will
not be analyzed one by one in this paper. The controller (12) can ensure the finite time convergence of the tracking error
of the input instruction.

3.4 Q-Learning Algorithm Design Based on Fuzzy Strategy

This paper adopts a Q-learning reinforcement learning strategy to adaptively adjust the parameters of the fast non-
singular terminal sliding mode (FNTSM) controller and the extended state observer (ESO), enabling the controller to
self-learn and improve performance in varying environments.
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The design focuses on the position loop, as it is more vulnerable to external disturbances, to enhance trajectory tracking
in complex scenarios. Using the x-channel as an example, the same applies to the y and z channels. Position error e and
its change rate \dot{e} are defined for the x-channel.

3.4.1 Basic model of reinforcement learning

The reinforcement learning algorithm operates without an explicit environmental model. Through interaction with the
environment, it collects state information, evaluates actions using reward functions, and continuously improves the state
-action mapping strategy. A Q-table is generated and updated iteratively during training, as illustrated in Figure 3.

3.4.2 The state space and parameter domain are defined based on fuzzy policy

Q-learning reinforcement learning algorithm can only learn discrete variables, so it needs to discretized the state space
and parameter domain, divide the state space according to fuzzy control strategy, takem;=n;=7, A total of 7 levels of
{NB,NM,NL,Z,PL.PM,PB} were used to divide the position error e and the error change rate e of the UAV, so as to
obtain different state Spaces of m; - n,=49 and define the range of each level, as shown in Table 1.

Update Q table _ %’\~\\ X ,
- \\\\

P
Reward value R / ) P"; )
( / ‘\f‘xr—l
\ y
. >
X, H\* environment (4~ action set 4

Figure 3 The Basic Framework of Reinforcement Learning

Table 1 State Interval Division Table

(S [§]
NB [-2, -1) [-200, -100)
NM [-1, -0.4) [-100, -50)
NL [-0.4, -0.1) [-50, -10)
z [0.1, 0.1] [-10, 10]
PL (0.1, 0.4] (10, 50]
PM 0.4, 1] (50, 100]
PB (1, 2] (100, 200]

Select the main controller parameters oy, B¢ , and select the extended state observer parameters 1, , 1,,. According to

debugging experience, select a reasonable parameter range and seta, €[1,7], B, €[1,7], lpl €[10,30], 1lD4 €[10,30]. If

P1=p2=7, p3=p4=20 are the number of selected actions, the number of available actions in action setA=[a,By,l, .15, ] is

Pi P2 Pz Psa=19600. Therefore, the Q table is a matrix of dimension 19600x49 and the expression of the Q table is:
QXp,a)  QXya) - Q(XAMsal)

o QX))  QXpa)  QXaya2)

27)
QXpas9) Q(Xpas9)  Q(Xpy»249) 249

where, M=19600.

3.4.3 Q-learning Algorithm learning and updating process

The position error e and error change rate e of the current UAV control system are taken as the state X; in the

reinforcement learning process, and the combination of main controller parameters and extended state observer

parameters is selected as the action set A . The reward function R, attenuation factor y, and learning rate n are designed.

The specific steps of Q-learning reinforcement learning algorithm are as follows:

Step 1: Algorithm initialization, including initializa-tion of UAV parameter information and Q-learning related

parameters.

Step 2: Define the domain of position error e and error rate e of change. The domains of e ande are represented by E,

and E,, respectively.

Step 3: Initializes the state space and action set A. Reasonable choice of action interval, A; € [AimaX;y;,, p; values were

uniformly selected in these four groups, i=1,2,3,4.

A=Ay ) e 19 (28)
i
Step 4: Design state transition matrix Pg{txm . Select actions based on the state transition probability, and use the
e—greedy to get the state transition probability:
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g
— ., a=agmax, Q(Xaa)
7(d X)- AX)+1=e (29)
£
AX)

Step 5: Perform action a in the current state to obtain a new state Xand rewardR. The performance functionJis used to
design the reward functionR, to enhance the rationality of Q table. The reward function is designed as follows:

, else

=t+20
= )20
=t
&15.&)<p (30)
R=1 &1, &J=p
15, I>p

where, p defines the parameters for the set reward.
Step 6: Update value function. The value function is designed as follows:

QX A)=Q(X,Atn [VmSXQ(XHl ) TR —QXAY] 3D
Step 7: When the termination condition is reached, the learning ends; Otherwise, return to Step 4. The training
termination conditions are as follows:
The current training ends when the control process reaches A stable state,|e|<0.001&&|e|<0.01.
The position error in the control is too large, and it is not meaningful to continue to iterate according to this state, so the
current training is ended when|e|>2.
The number of iterative learning training of Q-learning is designed to be N. When N =2000, the learning ends and the
trained Q-table can be obtained, which can be used for UAV trajectory tracking control. Q table is used to select the
optimal action in the current state for control.
Simulation experiment
In order to verify the control performance of the algorithm proposed in this paper, this section uses the data of a small
UAYV model to conduct simulation experiments of the corresponding algorithm through computer simulation software,
and sets the fixed parameter values required by the simulation experiments.
The main parameters of the position loop controller are adjusted adaptively by reinforcement learning algorithm, and
the other parameters are consistent with the attitude loop. The system initial values are set as follows:
[x,y,2]"=[2,2,01",[,0,4]"=[0,0,0]".
The expected trajectory is set as follows:x,=sin (0.5t), y,=0.5cos(0.5t), z =15+0.2t y,=60" sin(0.5t).
In order to get close to the real flight environment and simulate the turbulent wind field, time-varying wind field and
gust wind field contrary to the flight direction under the actual work scene, external disturbances are set. The external
disturbances in the position subsystem are set as a function of the mass of the quadrotor UAV, so that the external
disturbances it receives are at the same order of magnitude as the UAV. The external disturbances in the position
subsystem are as follows:

&1.2m, 0<t<10

di={&0.5m+m" sin(0.5t), 10<t<20 (32)
&—1.5m, t>20
where, i=1,2,3.
The external disturbance Settings of the attitude subsystem are as follows:
&0.4, 0<t<10
d,=4&0.5+0.5sin (0.5t), 10<t<20 (33)
&—0.6, t>20
where, A=4,5,6.

To validate the algorithm, comparisons were made with fixed-parameter FNTSM and LADRC. The proposed method
demonstrates superior trajectory tracking in both position (Figure 4) and yaw angle (Figure 5(c)), with smaller steady-
state error. While LADRC shows overshoot, our approach achieves faster, overshoot-free convergence, maintaining
tracking error below 0.0 1m.

For roll (¢) and pitch (0) angles, which should remain minimal during flight, the proposed algorithm provides quicker
stabilization with less overshoot and better disturbance rejection compared to FNTSM and LADRC (Figure 5(a)-(b)).
Overall, the Q-learning enhanced FNTSM controller outperforms both conventional LADRC and fixed-parameter
sliding mode control.
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Figure 6 shows the adaptive parameter adjustment of the Q-learning enhanced FNTSM controller based on tracking
error (e) and error rate (€). After training, the algorithm uses a Q-table to select optimal control parameters in real-time.
The figure shows that parameters adjust actively when e and ¢é are large, and remain stable once e and ¢ converge near
zero. This demonstrates the controller’s capability for autonomous parameter tuning and improved control performance.
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Figure 6 The Control Parameter Adaptively Adjusts with the Tracking Error
4 CONCLUSION

Aiming at the situation of parameter uncertainty and external interference of quadrotor UAV, this design adopts the
control idea of reinforcement learning, and proposes a UAV control method that integrates Q-learning reinforcement
learning with fast non-singular terminal sliding mode control. Q-learning is used to train controller and observer
parameters. It makes up for the shortcomings of traditional sliding mode control, which is unable to adapt the
parameters of controller and observer, and compares the simulation effect with the traditional method. The experimental
results show that the method designed in this paper has excellent performance in trajectory tracking and anti-
interference, and the response curve fits the reference trajectory to a high degree, which verifies the effectiveness of the
algorithm. Next, in order to better adapt to complex flight scenarios and consider more practical factors, the algorithm
can be further optimized in future work, and on this basis, optimization algorithms such as neural networks can be
added to combine with deep learning methods to further improve the performance of the control algorithm.
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