

BEYOND AUTOMATION: ETHICAL RISK AND GOVERNANCE OF AI IN BUSINESS PRACTICE

YiCheng Wu

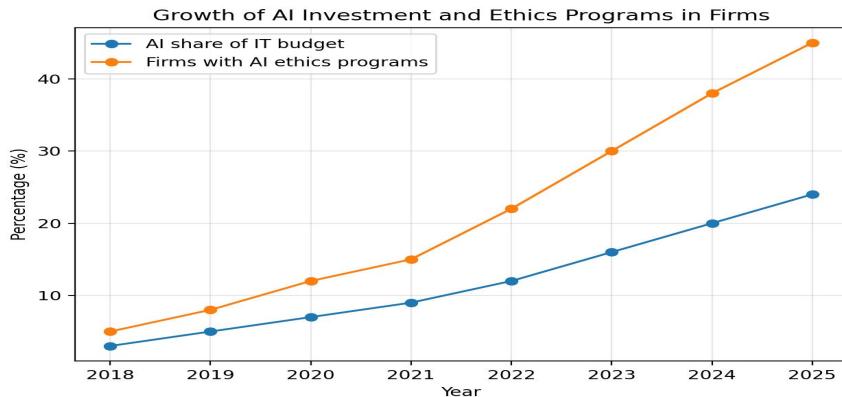
School of Engineering, Huzhou University, Huzhou 313000, Zhejiang, China.

Abstract: The rapid proliferation of artificial intelligence (AI) across various business functions is fundamentally changing how organizations make decisions. While AI-driven systems promise to improve efficiency and analytical accuracy, their widespread application also introduces new ethical risks related to accountability, fairness, and transparency. This paper explores the ethical impact of AI applications in the business environment by analyzing corporate AI investment trends, the rise of internal ethics projects, and the distribution of ethical risks across different application areas. Using public reporting and governance frameworks, the study finds that ethical risk exposure increases dramatically as AI systems shift from operational support to high-impact decision-making. The findings suggest that responsible AI governance should be integrated into strategic management processes, rather than being viewed as an isolated compliance issue.

Keywords: Business AI; Ethics; Governance; Algorithmic decision-making; Responsible innovation

1 INTRODUCTION

Artificial intelligence (AI) has become an indispensable part of modern business operations, profoundly reshaping how companies allocate resources, evaluate performance, and interact with diverse stakeholders [1]. Initially, AI was primarily used for back-end data analysis and process optimization; its role mainly focused on improving operational efficiency and reducing management costs [2,3]. However, with the continuous expansion of algorithmic capabilities and data scale, AI systems are gradually being embedded in more strategically important business areas, such as talent screening, credit assessment, and personalized marketing [4]. In these contexts, algorithmic outputs no longer merely affect internal process efficiency but directly relate to individual opportunity allocation, organizational fairness, and corporate social image, thus significantly amplifying the ethical risks inherent in algorithmic decision-making [3,5]. From a management perspective, the ethical challenges posed by AI are not entirely due to inherent flaws in the technology itself, but are closely related to the internal incentive structure and performance orientation of enterprises [4-6]. Business organizations typically emphasize speed, scale, and cost control, an environment that easily encourages managers to highly automate decision-making processes in pursuit of short-term efficiency gains. In the absence of adequate governance mechanisms, algorithmic systems may be perceived as "neutral and objective" tools, with their decision-making outcomes often lacking necessary scrutiny and questioning. This leads to the marginalization, or even unintentional and systematic neglect, of ethical issues such as fairness, explainability, and attribution of responsibility. Meanwhile, publicly available survey data shows that corporate investment in artificial intelligence has continued to grow over the past decade, with AI-related spending now accounting for a significant proportion of overall IT budgets in many organizations. This trend indicates that AI has transformed from an experimental technology into a crucial component of core corporate capabilities[7-9]. Notably, with the accelerated adoption of the technology, more and more companies are establishing internal AI ethics guidelines, governance committees, or risk assessment processes, reflecting a gradual increase in organizational awareness of ethical and regulatory risks. However, this awareness remains significantly uneven across different companies and business scenarios. How to systematically integrate ethical principles into daily business decisions remains a pressing question in current business practice.


The main contributions of this paper are as follows:

1. This paper places AI ethics issues within the context of actual corporate decision-making and organizational incentive structures, avoiding a simplistic attribution of ethical risks to technological factors, thus expanding the analytical framework for AI ethics in business research.
2. This paper systematically characterizes the structural characteristics of the simultaneous rise in corporate AI adoption and ethical governance needs, providing reproducible empirical evidence for understanding the relationship between technology diffusion and governance evolution.
3. This paper emphasizes transforming AI ethics from abstract principles into actionable governance mechanisms, providing management insights for enterprises to achieve risk control and long-term value creation while pursuing efficiency and innovation.

2 EMPIRICAL RESEARCH

To examine the expansion of artificial intelligence (AI) applications in business organizations and its ethical governance characteristics, this paper conducts a descriptive empirical analysis based on publicly available data [4,9]. This analysis examines the intensity of corporate AI investment, the establishment of internal ethical governance mechanisms, and

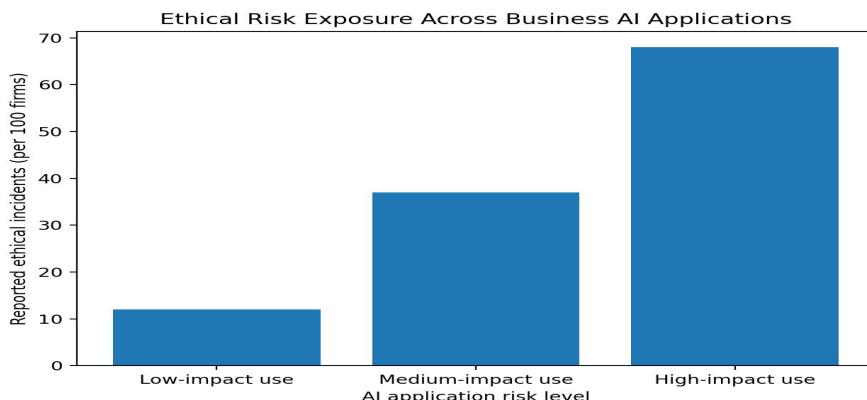

the exposure of ethical risks in different application scenarios. Through time-series comparisons and structural analyses of relevant indicators, this paper attempts to reveal the correlation patterns between corporate AI technology investment and the institutionalization of ethical governance, and further analyzes the distribution characteristics of ethical risks in different business application contexts [5,10]. Based on the above analytical framework, this paper obtains the main empirical results shown in Figures 1 and 2.

Figure 1 Corporate AI Investment Growth and Ethics Program Adoption

Figure 1 shows that the intensity of AI investment and the adoption of internal ethical norms are rising in parallel, indicating that ethical governance mechanisms are becoming increasingly institutionalized within organizational structures as companies allocate more of their IT budgets to AI-related projects. Notably, while AI spending has grown in a relatively stable and gradual manner over time, the adoption of internal ethical frameworks has accelerated significantly in recent years. This discrepancy suggests that ethical governance in many companies remains largely reactive, emerging only in response to accumulated operational risks, regulatory pressures, or public scrutiny, rather than being proactively embedded in the early stages of AI deployment. This lag between technology investment and ethical institutionalization means that governance structures are often built only after AI systems have become deeply integrated into business processes.

Meanwhile, the ethical risk exposure associated with AI deployment varies significantly across different application scenarios, further increasing the complexity of governance design. Low-impact applications, such as demand forecasting or logistics optimization, typically have indirect or limited impacts on individuals and are therefore subject to relatively less ethical scrutiny. In contrast, high-impact applications—including algorithmic hiring, automated credit scoring, and other forms of evaluative decision-making—directly affect individual opportunities and social outcomes, thus exacerbating the ethical risks associated with model performance and decision transparency. This asymmetry highlights the limitations of uniform ethical norms and underscores the necessity of adopting a risk-sensitive governance approach that aligns regulatory with the potential social impact of specific AI application cases.

Figure 2 Ethical Risk Incidents across Business AI Application Types

As shown in Figure 2, the ethical risk levels exposed by different types of AI applications vary significantly, and the reporting frequency of related ethical incidents shows a clear upward trend as the application risk level increases. In low-impact applications, the incidence of ethical incidents is relatively low. These applications are typically used for supportive decision-making, such as demand forecasting and inventory management, with limited direct impact on individual rights and social outcomes. In contrast, medium-impact applications have begun to participate in decision-making in areas such as marketing and pricing. Their algorithmic outputs may indirectly affect consumer choices and market fairness, and their sensitivity to biases and inappropriate incentives is significantly increased. In high-impact application scenarios, such as recruitment screening and credit scoring, algorithmic decisions directly relate to an individual's employment opportunities, financing capabilities, and social mobility, resulting in significantly higher

ethical risk exposure levels than other types of applications. This result indicates that ethical risks are not evenly distributed across all AI applications but are closely related to the decision consequences and social impact of the business scenario.

This differentiated risk structure further reveals the limitations of a unified governance model. If enterprises rely solely on a single, universal ethical framework or technical specifications, they often find it difficult to effectively address the complex risks brought about by high-impact applications. Therefore, it is necessary to introduce an ethical management strategy based on risk levels to match the intensity of governance with the application context. Table 1 summarizes the governance priorities under different risk levels: In low-impact applications, the governance focus is mainly on data quality control to ensure the accuracy and stability of input data; in medium-impact applications, bias monitoring becomes the core task, requiring continuous evaluation to prevent algorithms from amplifying unfair outcomes in market behavior; and in high-impact applications, the governance focus shifts to establishing human oversight and accountability mechanisms to ensure that key decisions are not fully automated and to provide clear accountability pathways for decision outcomes.

Table 1 Governance Priorities across Business AI Risk Contexts

Business AI context	Typical functions	Primary governance focus
Low-impact use	Forecasting, inventory	Data quality
Medium-impact use	Marketing, pricing	Bias monitoring
High-impact use	Hiring, credit scoring	Human oversight & accountability

Overall, Table 1 reflects that ethical governance should be upgraded gradually as the risk level of AI applications increases. The core issue is not increasing technological complexity, but rather embedding governance mechanisms into the organizational decision-making structure. Compared to simply relying on technical remedial measures, enterprises need to clearly define the allocation of decision-making power, the attribution of responsibility, and the supervision process through institutional design, thereby forming a stable and auditable governance system at the organizational level.

In conclusion, the ethical challenges posed by artificial intelligence in the business environment are inextricably linked to corporate governance and strategic responsibility issues. As AI systems increasingly participate in high-impact decisions, enterprises that focus solely on technical performance and short-term efficiency will find it difficult to effectively address the resulting ethical and compliance risks. Conversely, by constructing an integrated governance framework that systematically incorporates ethical considerations into business strategies and operational processes, enterprises can not only reduce potential harms but also build a trust advantage and long-term sustainable competitive capabilities in a highly competitive digital economy.

3 CONCLUSION

This paper examines AI ethics from a corporate governance perspective, analyzing ethical risks within the framework of organizational decision-making and incentive mechanisms, rather than merely viewing them as technical issues, thus contributing to the relevant literature. Through a combination of publicly available data and structured time-series analysis, this study reveals the synchronous evolution of AI applications and governance needs. Furthermore, this paper translates ethical principles into practical applications in operational governance, providing feasible suggestions for companies seeking a balance between innovation and responsible management.

COMPETING INTERESTS

The authors have no relevant financial or non-financial interests to disclose.

REFERENCES

- [1] Floridi Luciano, Josh Cowls, Monica Beltrametti, et al. AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. *Minds and machines*, 2018, 28, 689-707.
- [2] Kroll J A, Joanna Huey, Solon Barocas, et al. Accountable Algorithms. *University of Pennsylvania Law Review*, 2017, 165(3): 633-705.
- [3] Martin K. Ethical implications and accountability of algorithms. *Journal of Business Ethics*, 2019, 160(4): 835-850.
- [4] Analytics McKinsey. Global survey: The state of AI in 2020. *McKinsey & Company*. 2020, 1-13.
- [5] NIST. Artificial intelligence risk management framework (AI RMF 1.0). *NIST Special Publication*, 2023: 100–1. <https://nvlpubs.nist.gov/nistpubs/ai/nist.ai>.
- [6] OECD. *OECD Principles on Artificial Intelligence*. *OECD*, 2019/2024.
- [7] Stahl Bernd Carsten. Artificial intelligence for a better future: an ecosystem perspective on the ethics of AI and emerging digital technologies. *Springer Nature*, 2021. DOI: 10.1007/978-3-030-69978-9.
- [8] Zhou Wen, Wang Xiaodon, Fan Yusheng, et al. KDSMALL: A lightweight small object detection algorithm based on knowledge distillation. *Computer Communications*, 2024, 219: 271-281. DOI: 10.1016/j.comcom.2023.12.018.

- [9] Wang Chao, Wang Zhongyuan, Hu Ruimin, et al. Optimal Illumination Distance Metrics for Person Re-Identification in Complex Lighting Conditions. *ACM Transactions on Multimedia Computing, Communications and Applications*, 2025, 21(1): 1-18. DOI: 10.1145/3700771.
- [10] Zuboff Shoshana. *The age of surveillance capitalism. Social theory re-wired*. Routledge, 2023. 203-213. <https://routledgesoc.com/writing-out-loud/the-age-of-surveillance-capitalism>.