Science, Technology, Engineering and Mathematics.
Open Access

EXTENSION OF NEW MODEL WITH GOOD APPROXIMATION BASED ON RECURRENCE RELATION

Download as PDF

Volume 7, Issue 5, Pp 75-81, 2025

DOI: https://doi.org/10.61784/ejst3116

Author(s)

PeiPei Ji*JunHui Yang

Affiliation(s)

School of Health Management, Xi’an Medical University, Xi’an 710021, Shaanxi, China.

Corresponding Author

PeiPei Ji

ABSTRACT

By using novel recurrence relation, some models with good approximation are constructed, which include three aspects: extension of curve of degree n, extension of surface of degree n over rectangular domain. First, based on a novel recurrence relation, we define a Quasi-Bernstein-basis of degree n with multiple parameters, which includes the classical Bernstein basis of degree n as a special case and has similar properties with the classic Bernstein basis. And the definition, properties, comer cutting algorithm, adjustable effect and quantification of approximation of related curves are discussed in detail. Next, tased on Quasi-Bernstein-basis, we develop a tensor product surface with multiple parameters over rectangular domain, and discuss continuity of Quasi-Bézier-surface at length. Compared with the existing methods, the proposed models keep can beautiful properties of classical method and the multiple parameters introduced in these models can flexibly adjust shape of the generated model and possess good approximation.

KEYWORDS

Recurrence relation; Bernstein basis; Corner cutting algorithm; De Cateljau-type algotithm

CITE THIS PAPER

PeiPei Ji, JunHui Yang. Extension of new model with good approximation based on recurrence relation. Eurasia Journal of Science and Technology. 2025, 7(5): 75-81. DOI: https://doi.org/10.61784/ejst3116.

REFERENCES

[1] Rababah A, Mann S. Iterative process for G 2 -multi degree reduction of Bézier curves. Applied Mathematics and Computation, 2011, 217(20): 8126-8133.

[2] Cao Juan. Adjustment and analysis of curved surface shapes in CAGD. Zhejiang University, 2011(3).

[3] Coelho M, Roehl D, Bletzinger K. Material model based on NURBS response surfaces. Applied Mathematical Modelling, 2017, 51, 574-586.

[4] Oruc H, Phillips M G. q -Bernstein polynomials and Bézier curves. Journal of Computational and Applied Mathematics, 2003, 151(1): 1-12.

[5] Vijay, Prasad P G M, Kumar S G. A new class of cubic trigonometric zipper fractal Bézier curveswith one shape parameter. The European Physical Journal Special Topics, 2025, 1-11. DOI: https://doi.org/10.1140/epjs/s11734-025-01584-1.

[6] Hu G, Wu J, Qin X. A novel extension of the Bézier model and its applications to surface modeling. Advances in Engineering Software, 2018, 125, 27-54.

[7] Shen W, Wang G. Geometric shapes of C-Bézier curves. Computer-Aided Design, 2015, 58, 242-247.

[8] Hu G, Bo C, Wei G, et al. Shape-adjustable generalized Bézier surfaces: Construction and it is geometric continuity conditions. Applied Mathematics and Computation, 2020, 378.

[9] Zhu Y, Han X. Quasi-Bernstein–Bézier polynomials over triangular domain with multiple shape parameters. Applied Mathematics and Computation, 2015, 250, 181-192.

[10] Bashir U, Ali M J. Rational cubic trigonometric Bézier curve with two shape parameters. Computational and Applied Mathematics, 2016, 35(1): 285-300.

[11] Zhu Yuanpeng. Research on Geometric Modeling Theory and Methods with Shape Parameters in Bases. Central South University, 2014(12).

[12] Hu G, Wu J, Qin X. A new approach in designing of local controlled developable H-Bézier surfaces. Advances in Engineering Software, 2018, 121, 26-38.

[13] Han X, Zhu Y. A Practical Method for Generating Trigonometric Polynomial Surfaces over Triangular Domains. Mediterranean Journal of Mathematics, 2016, 13(2): 841-855.

[14] Mazure M. Quasi-Chebyshev splines with connection matrices: application to variable degree polynomial splines. Computer Aided Geometric Design, 2001, 18(3): 287-298.

[15] Mazure M. On dimension elevation in Quasi Extended Chebyshev spaces. Numerische Mathematik, 2008, 109(3): 459-475.

[16] Zhu Y, Han X, Liu S. Curve construction based on four α β -Bernstein-like basis functions. Journal of Computational and Applied Mathematics, 2015, 273, 160-181.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2025 Science, Technology, Engineering and Mathematics.   All Rights Reserved.